ALGEBRAIC STRUCTURES



Chapter 1

Group Theory

1.1 Basics of Group

Definition 1.1.1. A group is an ordered pair (G, x*), where G is a nonempty set and
* is a binary operation on G such that the following properties hold:

(G1) For all a,b,c € G, ax (bxc) = (ax*b) *c (associative law).

(G2) There exists e € G such that for all @ € G, a*xe = a = e * a (existence of an
identity).

(G3) For all a € G, there exists a’ € G such that a xa’ = e = @’ % a (existence of an

inverse).

Definition 1.1.2. A group G is said to be abelian if ab = ba for all a,b € G. A group

which is not abelian is called a non-abelian group.

Examples 1.1.3.
1. Let G = {e} and e * e = e. Obviously G is a trivial group.

2. Z,Q,R and C are groups under usual addition.



3. The set of all 2 x 2 matrices where a,b,c,d € R is a group under ma-
c d
trix addition. is the identity element and o is the inverse of
00 —c —d
a b
c d
. . a .
4. The set of all 2 x 2 non-singular matrices where a, b, c,d € R is a group un-
c d
a
der matrix multiplication. is the identity element. The inverse of
0 1 c d
., [ a b
is g where |A| = ad — be # 0.
c d

5. N is not a group under usual addition since there is no element e € N such that

r+e=ux.
6. The set [E of all even integers under usual addition is a group.

7. Q* and R* under usual multiplication are groups. 1 is the identity element and the

inverse of a non-zero element «a is 1/a.
8. Q7 is a group under usual multiplication. For a,b € Qt = ab € QT. Therefore usual
multiplication is a binary operation in Q.

1 € Q7 is the identity element. If a € Q*, (1/a) € Q1 is the inverse of a.
9. Z under the usual multiplication is not a group.

10. G = {1,i,—1,—i}. G is a group under usual multiplication. The identity element
is 1. The inverse of 1,7, —1 and —¢ are 1, —2, —1 and ¢ respectively.

The Cayley table for this group is given by



10 -1 0 1 0 -1 0
11 LetG: 3 9 )

0 1 0 1 0 —1 0 -1
G is a group under matrix multiplication. [Construct the Cayley table for this group]

12. C* is a group under usual multiplication given by (a + ib)(c + id) = (ac — bd) +
i(ad + be).
13. Let G={z: z € Cand |z| =1}. Then G is a under usual multiplication.

14. The set of all n'* roots of unity with usual multiplication is a group.

15. Let G = {a+bv/2: a,b € Z}. Then G is a group under addition.

Definition 1.1.4. Let Z, = {0,1,2,...,n — 1}. Let a,b € Z,,. Then a+b=qgn+r
where 0 < r < n. We define a ®b = r. Let ab = ¢'n + s where 0 < s < n. We
define a ® b = s. The binary operations @& and ® are called addition modulo n and
multiplication modulo n respectively. Then (Z,, @) is an abelian group.

Let n be a prime. Then Z,, — {0} is a group under multiplication modulo 7.

1.2 Elementary properties of group

Theorem 1.2.1. Let G be a group. Then
(i) There exists a unique identity element e € G such that e xa = a = a * e for all
acd.

(ii) For all a € G, there ezists a unique inverse a’ € G such that axa' = e =a' *xa.



Proof. (i) Now G is group. Therefore, by (G2), there exists e € G such that e x a =
a = axe for all a € G. Suppose, let e and €' be two identity elements of G. Then
ee’ = €' (since e is an identity element). Also ee’ = e(since €’ is an identity element).
Hence e = ¢'.

(ii) Let a € G. By (G3), there exists a’ € G such that a x ' = e = @’ * a. Suppose
there exists a” € G such that a x a” = e = a” x a. We show that o’ = a”. Now

a'=da xe=d x(axdad)(substituting e = a x a”)
= (a' *a) *a” = exa”’(because ¢’ xa =e) = d”.

Thus, ' is unique. O

We denote the inverse of a by a™*.

Theorem 1.2.2. In a group, the left and right cancellation laws hold (i.e,) ab = ac =

b=c and ba=ca=b=c.

Proof. Suppose ab = ac = a'(ab) = a '(ac)= (a"'a)b = (a ta)c = eb = ec

= b = c¢. Similarly, we can prove that ba = ca = b = c. O

Theorem 1.2.3. Let G be a group and a,b € G. Then the equation ax = b and ya = b

have unique solutions for x and y in G.

Proof. Consider a='b € G. Then a(a™'b) = (aa™')b = eb = b. Hence a7 'b is a
solution of ax = b. Now, to prove the uniqueness, let z; and x5 be two solutions of
ax = b. Then ax; = b and axy = b. Therefore ax; = axy which implies 1 = x5. Hence
x = a~'bis the unique solution for az = b. Similarly we can prove that y = ba~" is the

solution of the equation ya = b. a

Theorem 1.2.4. Let G be a group. Let a,b € G. Then (ab)™' =b"'a™! and (a™')™! =

a.



Proof. Now (ab)(b~'a™!) = a(bb~)a ! = aea™ = aa™! = e. Similarly (b~'a"1)(ab) =

e. Hence (ab)™! = b~'a~t. Proof of the second part is obvious. O

Corollary 1.2.5. If ai,as,...,a, € G then (ajay---a,)™' =a;ta - -a;*.

Definition 1.2.6. Let GG be a group and a € G. For any positive integer n, we define

a” = aa---a(a written n times). Clearly (a”)™! = (aa---a)™' = (a7ta™ - a7 ) =

n

(a™)~!. Now we define a™" = (a™')" = (a”)~'. Finally we define a® = e. Thus a" is

defined for all integers n.

When the binary operation on G is "+”, we denote a + a + --- + a (a written n

times) as na.

Theorem 1.2.7. Let G be a group and a € G. Then
(i) a™a™ = a™™" m,n € Z.

(ii) (a™)* = a™, m,n € Z.

1.3 Permutation Groups

Definition 1.3.1. Let A be a finite set. A bijection from A to itself is called a

permutation of A.

For example, if A = {1,2,3,4} f: A — Agiven by f(1) =2, f(2) =1, f(3) = 4 and

1 2 3 4
f(4) = 3 is a permutation of A. We shall write this permutation as

21 4 3
An element in the bottom row is the image of the element just above it in the upper

TOw.



Definition 1.3.2. Let A be a finite set containing n elements. The set of all permu-
tations of A is clearly a group under the composition of functions. This group is called

the symmetric group of degree n and is denoted by .5,,.

1 2 3
Example 1.3.3. Let A = {1,2,3}. Then S; consists of e = ;
1 2 3
1 2 3 1 2 3 12 3 12 3
b1 = D2 = D3 = D4 = ;
2 31 31 2 1 3 2 3 21
1 2 3
Ps = . In this group, e is the identity element. We now compute the
2 1 3
product pips.
1 2 3
pr: L L] 123
2 3 1 Hencepips: | | |
pe: Ll 123
1 2 3
1 2 3 12 3 12 3
So that p;ps = e. Now, pipy = = = ps.
2 31 3 21 2 1 3

Similarly we can compute all other products and Cayley table for this group is given

by

€ P1 P2 P3 Psa Ps

el e pr p2 P3 Ps Ps
Pr|P1 P2 € P4 P5 D3
P2 | p2 € PpP1 D5 P3 P4
Ps | P3 P5 pPa € D2 D1

Pas | P4 P3 P5 P11 € D2

Ps | P5 P4 P3 P2 P11 €

Thus S5 is a group containing 3! = 6 elements.



In S3, p1ps = pap1 = e so that the inverse of p; is po. In general the inverse of a

permutation can be obtained by interchanging the rows of the permutation.

1 2 3 4 5
For example, if p = then the inverse of p is the permutation
342 51
34 2 51 1 2 3 45
given by p~! = =
1 2 3 4 5 5 31 2 4

In S3, p1ps = ps and pyp1 = p3. Hence pipy # papy so that Ss is non-abelian.

The symmetric group S, containing n! elements, for, let A = {1,2,...,n}. Any
permutation on A is given by specifying the image of each element. The image of 1 can
be chosen in n different ways. Since the image of two is different from the image of 1, it
can be chosen in (n — 1) different ways and so on. Hence the number of permutations

of Aisn(n—1)---2-1=n!so that the number of elements in .S, is n!.

Definition 1.3.4. Let G be a finite group. Then the number of elements in G is called
the order of G and is denoted by |G| or o(G).

Definition 1.3.5. Let p be a permutation on A = {1,2,...,n}. pis called a cycle
of length 7 if there exist distinct symbols aq, as, ..., a, such that p(a;) = as,p(az) =
as,...,pla,—1) = a,, and p(a,) = a1, and p(b) = b for all b € A — {ay,as,...,a.}. This
cycle is represented by the symbol (aq,as,--- ,a,).

Thus under the cycle (aq,as,- - ,a,) each symbol is mapped onto the following
symbol except the last one which is mapped onto the first symbol and all the other

symbols not in the cycle are fixed.

Example 1.3.6. Let A = {1,2,3,4,5}. Consider the cycle of length 4 given by p =

1 2 3 45
(2451). Then p = and so (2451) = (4521) = (5124) = (1245).
24 351



Remark 1.3.7. Since cycles are special types of permutations, they can be multiplied
in the usual way. The product of cycles need not be a cycle.
For example, let p; = (234) and p, = (1,5). Then

1 2 3 45 1 2 3 45 1 2 3 45
PP = = which is not

1 3425 5 2 3 4 1 53 4 2 1
a cycle.

Definition 1.3.8. Two cycles are said to be disjoint if they have any no symbols in

CcOomimon.

For example (2 1 5) and (3 4) are disjoint cycles.

Remark 1.3.9. If p; and p, are disjoint cycles the symbols which are moved by p; are

fixed by ps and vice versa. Hence multiplication of disjoint cycles is commutative.

Theorem 1.3.10. Any permutation can be expressed as a product of disjoint cycles.

The decomposition of a permutation into disjoint cycles is unique except for the

order of the factors.

Definition 1.3.11. A cycle of length two is called a transposition . Thus a trans-
position (ajas) interchanges the symbols a; and as and leaves all the other elements

fixed.

Theorem 1.3.12. Any permutation can be expressed as a product of transpositions.

Proof. Since any permutation is a product of disjoint cycles it is enough to prove
that each cycle is a product of transpositions. Let ¢ = (ajas---a1) be a cycle. Then

(aras---ay) = (ajas)(aszasz) - - - (aya,). This proves the theorem. a



Theorem 1.3.13. If a permutation p € S, is a product of r transpositions and also a

product of s transpositions then either v and s are both even or both odd.

Definition 1.3.14. A permutation p € S, is called even or odd according as p can
be expressed as a product of an even number of transpositions or an odd number of

transpositions respectively.

Theorem 1.3.15. (i) The product of two even permutations is an even permutation.
(i) The product of two odd permutations is an even permutation.

(#ii) The product of an even permutation and an odd permutation is an odd permutation.
(iv) The inverse of an even permutation is an even permutation.

(v) The inverse of an odd permutation is an odd permutation.

(vi) The identity permutation e is an even permutation.

Theorem 1.3.16. Let A, be the set of all even permutations in S,. Then A, is a

n!
group containing 5 permutations.

Definition 1.3.17. The group A, of all even permutations in S, is called the alter-

nating group on n symbols.

1.4 Subgroups

Definition 1.4.1. Let GG be a set with binary operation * defined on it. Let S C G.
If for each a,b € S, axbisin S, we say that S is closed with respect to the binary

operation .



Examples 1.4.2. (i) (Z,+) is a group. The set E of all even integers is closed under
+ and further (E, +) is itself a group.

(ii) The set of G of all non-singular 2 x 2 matrices form a group under matrix

cos  —sin 0
multiplication. Let H be the set of all matrices of the form . Then

sin 6 cos 0
H is subset of G and H itself a group under matrix multiplication.

Definition 1.4.3. A subset H of group G is called subgroup of GG if H forms a group

with respect to the binary operation in G.

Examples 1.4.4. (i) Let G be any group. Then {e} and G are trivial subgroups of
G. They are called improper subgroups of G.

(i) (Q,+) is a subgroup of (R,+) and (R, +) is a subgroup of (C, +).

(iii) In (Zs, ®), let H; = {0,4} and Hy = {0,2,4,6}. The Cayley tables for H; and H,

are given by

©|0 2 4 6
©|0 4 010 2 4 6
010 4 212 4 6 0
414 0 414 6 0 2
616 0 2 4

It is easily seen that H; and H, are closed under & and (Hy,®) and (Hs, @) are
groups. Hence H; and Hy are subgroups of Zs.
(iv) {1,—1} is a subgroup of (R*,-).
(v) {1,4,—1,—i} is a subgroup of (C*, ).
(vi) For any integer n we define nZ = {nz : x € Z}. Then (nZ,+) is a subgroup
of (Z,+). For, let a,b € nZ. Then a = nx and b = ny where z,y € Z. Hence
a+b=n(x+vy) €nZ and so nZ is closed under +. Clearly 0 € nZ is the identity

element. Inverse of nz is —nx = n(—x) € nZ. Hence (nZ,+) is a group.

10



(vii) In the symmetric group Ss, Hy = {e,p1,p2}; Hy = {e,ps}; H3 = {e,ps}; and
Hy = {e,ps} are subgroups.

(viii) A, is a subgroup of S,,.

In all the above examples we see that the identity element in the subgroup is the

same as the identity element of the group.

Theorem 1.4.5. Let H be a subgroup of G. Then
(a) the identity element of H is the same as that of G.

(b) for each a € H the inverse of a in H is the same as the inverse of a in G.

Proof. (a) Let e and ¢’ be the identity of G and H respectively. Let a € H. Now,
¢'a = a(since €’ is the identity of H)
= ea(since €’ is the identity of G and a € G)

€'a = ea = ¢ = a(by cancellation law)

(b) Let @’ and a” be the inverse of a in G and H respectively. Since by (a), G and H
have the same identity element e, we have a’a = ¢ = a”a. Hence by cancellation law,

a =a. 0

Theorem 1.4.6. A subset H of a group G is a subgroup of G if and only if
(i) it is closed under the binary operation in G.

(i) The identity e of G isin H. (iii)a € H=a"' € H.

Proof. Let H be subgroup of G. The result follows immediately from Theorem 1.4.5.
Conversely, let H be a subset of G satisfying conditions (i), (ii) and (iii). Then,
obviously H itself a group with respect to the binary operation in G. Therefore H is

a subgroup of G. O

Theorem 1.4.7. A non-empty subset H of a group G is a subgroup of G if and only
ifa,b€ H=ab™t € H.

11



Proof. Let H be a subgroup of G. Then a,b€ H = a,b-' € H = ab™! € H.

Conversely, suppose H is a non-empty subset of G such that a,b € H = ab™! € H.
Since H # (), there exists a € H. Hence a,a™' € H. Therefore, e = aa™! € H, i.e., H
contains the identity element e. Also, since a,b € H. ea™! € H. Hence a=! € H. Now,
let a,b € H. Then a,b~' € H. Hence a(b~!)"! = ab € H and so H is closed under the

binary operation in G. Hence H is a subgroup of G. a

If the operation is + then H is a subgroup of G if and only if a,b € H = a—b € H.

Theorem 1.4.8. Let H be a non-empty finite subset subset of G. If H is closed under

the operation in G then H is a subgroup of G.

Proof. Let a € H. Then a,a?, ...,a", ... are all elements of H. But since H is

2 a®..., cannot all be distinct. Hence let a” = a*,r < s. Then

finite the elements a, a
a®* " =e € H. Now, let a € H. We have proved that a" = e for some n. Hence

aa” ! =e. Hence a=! = a" ! € H. Thus H is a subgroup of G. O

Theorem 1.4.8 is not true if H is infinite. For example, N is an infinite subset of

(Z,+) and N is closed under addition. However N is not a subgroup of (Z,+).

Theorem 1.4.9. If H and K are subgroups of a group G then HNK s also a subgroup
of G.

Proof. Clearly e € HN K and so H N K is non-empty. Now let a,b € H N K. Then
a,b € H and a,b € K. Since H and K are subgroups of G, ab~! € H and ab™! € K.
Therefore ab=! € H N K. Hence by Theorem 1.4.8, H N K is a subgroup of G. a

It can be similarly proved that the intersection of any number of subgroups of G is

again a subgroup of G.

12



The union of two subgroups of a group need not be a subgroup. For example, 27
and 3Z are subgroups of (Z,+) but 2ZU3Z is not a subgroup of Z since 3,2 € 2Z U 3Z
but 3+3 =5 ¢ 2Z U 3Z.

Theorem 1.4.10. The union of two subgroups of a group G is a subgroup if and only

if one is contained in the other.

Proof. Let H and K be two subgroups of GG such that one is contained in the other.
Then either H C K or K C H. Therefore H UK = K or HUK = H. Hence HUK
is a subgroup of G.

Conversely, suppose H is not contained in K and K is not contained in H. Then
there exist elements a,b such that a € H, a ¢ K, b€ K, and b ¢ H.

Clearly a,b € HUK. Since HUK is a subgroup of G ab € HUK. Hence ab € H or
ab€ K. Ifab € H, thena™! € H since a € H. Hence a~!(ab) = b € H, a contradiction.
If ab € K, b € K since b € K. Hence (ab)b™' = a € K, a contradiction. Hence
our assumption that H is not contained in K and K is not contained in H is false.

Therefore H C K or K C H. O

1.5 Cosets

Definition 1.5.1. Let H be a subgroup of a group G and a € G. The sets aH =
{ah: he€ H} and Ha = {ha: h € H} are called the left and right cosets of H in G,

respectively. The element a is called a representative of aH and Ha.

Examples 1.5.2.

1. Let us determine the left cosets of (5Z,+) in (Z,+). Here the operation is +.
0 4 5Z = 5Z is itself a left coset. Another left coset is 1 +5Z = {1+ 5n: n € Z}.

We notice that this left coset contains all integers having remainder 1 when divided

13



by 5. Similarly 24+ 5Z = {2+5n: n € Z}, 3+5Z = {3+5n: n € Z} and
44+5Z={4+5n: neZ}.

These are all the left cosets of (5Z,+) in Z. Here also we note that all the left
cosets are mutually disjoint, and their union is Z. In other words the collection of all

left cosets forms a partition of the group.

2. Consider (Zj2,®). Then H = {0,4,8} is a subgroup of G. The left cosets of H
are given by 0+ H = {0,4,8} = H, 1+ H = {1,5,9}, 2+ H = {2,6,10}, and
3+ H ={3,7,11}. We notice that 4 + H ={4,8,0} = H, and 5+ H = {5,9, 1} etc.

Theorem 1.5.3. Let G be a group and H be a subgroup of G. Then
(i))a€e H=aH =H.

(ii) aH =bH = a 'b€ H. (1) a € bH = a™' € Hb™'.

(iv) a € bH = aH = bH.

Proof. (i) Let « € H. We claim that aH = H. Let x € aH. Then x = ah for
some h € H. Now, a € H and h € H = ah = x € H(since H is a subgroup). Hence
aH C H. Let z € H. Then x = a(a 'z) € aH. Hence H C aH. Thus H = aH.
Conversely, let aH = H. Now a = ae € aH and a € H.

(ii) Let aH = bH. Then a '(aH) = a *(bH) and H = (a~'b)H. Hence a™'b €
H(by (i)

Conversely let a='b € H. Then a 'bH = H(by (i)), aa 'bH = aH and so bH = aH.

(iii) Let a € bH. Then a = bH for some h € H and so a™! = (bH)™' = h™1b7! €
Hb~!. Converse can be similar proved.

(iv) Let a € bH. We claim that aH = bH. Let x € aH. Then z = ah; for some
hi € H. Also a € bH = a = bhy for some hy € H. Therefore x = ((bhy)hi) =
b(hahy) € bH and so aH C bH. Now, let x € bH. Then x = bhs for some hy € H and
so b= ahy'. Therefore v = ah;'hs € aH and so bH C aH. Hence aH = bH.

Conversely, let aH = bH. Then a = ae € aH and so a € bH. O

14



Theorem 1.5.4. Let H be a subgroup of G. Then
(i) any two left cosets of H are either identical or disjoint.
(ii) union of all the left cosets of H is G.

(7i) the number of elements in any left coset aH is the same as the number of elements

i H.

Proof. (i) Let aH and bH be two left cosets. Suppose aH and bH are not disjoint.
We claim that aH = bH. Since aH and bH are not disjoint, aH UbH # () and so there
exists an element ¢ € aH UbH. Clearly ¢ € aH, ¢ € bH and so aH = cH, bH = cH.
Hence aH = bH.

(ii) Let a € G. Then a = ae € aH and every element of G belongs to a left cosets
of H.Thus the union of all the left cosets of H is G.

(iv) The map f: H — aH defined by f(h) = ah is clearly a bijection. Hence every

left coset has the same number of elements as H. O

This theorem shows that the collection of all left cosets forms a partition of the
group. The above result is true if we replace left cosets by right cosets. In what

follows, the result we prove for left cosets are also true for right cosets.

Remark 1.5.5. Let H be a subgroup of G. We define a relation in G as follows.
Define a ~ b <> a~'b € H. Then ~ is an equivalence relation.

For, a 'a =e € H, a ~ a and hence ~ is reflexive.

Now,a~b=a'be H= (a'b) e H=b"'ac H=1b~a.
Therefore a ~ b = b ~ a and ~ is symmetric.

Now, a~bandb~c=a'be Hand b'ce H= (a'b)(b"'c) € H=a"'ce
H = a ~ c. Hence ~ is transitive and so ~ is an equivalence relation.

Now, we claim that equivalence class [a] = aH. Let b € [a]. Then b ~ a.

albe H.

a~'b = h for some h € H.

15



b= ah Hence b € aH.
la] C aH.
Also, b € aH = b= ah for some h € H.
=a'b=heH=a~b=10b¢c|al
Thus the left cosets of H in GG are precisely the equivalence classes determined by ~.

Hence the left cosets form a partition of G.

Theorem 1.5.6. Let H be a subgroup of G. The number of left cosets of H is the

same as the number of right cosets of H.

Proof. Let L and R respectively denote the set of left and right cosets of H. We
define a map f: L — Rby f(aH) = Ha™'. fis well defined. For aH = bH = a~'b €
H=a'e H'= Ha'=Hb"' fis1-1. For, f(aH) = f(bH) = Ha ' = Hb! =
atce Hhl=a't=hb"!forsomehec H=a=0b"1=acbH = aH =bH. fis
onto. For, every right coset Ha has a pre-image under f namely a='H. Hence f is a
bijection from L to R. Hence the number of left cosets is the same as the number of

right cosets. a

Definition 1.5.7. Let H be a subgroup of G. The number of distinct left (right)
cosets of H in G is called the index of H in G and is denoted by [G : H].

Example 1.5.8. In (Zg, ®), H = {0,4} is a subgroup. The left cosets of H are given by
0+H={0,4}=H

1+ H = {1,5}
2+ H ={2,6}
3+ H={3,7}

These are the four distinct left cosets of H. Hence the index of the subgroup H is 4.
Note that [Zg: H| x [H] =4 x 2 =8 = |Zs].

16



Theorem 1.5.9 (Lagrange’s theorem). Let G be a finite group of order n and H be a
subgroup of G. Then the order of H divides the order of G.

Proof. Let |H| = m and [G : H| = r. Then the number of distinct left cosets of H
in G is r. By Theorem 1.5.6, these r left cosets are mutually disjoint, they have the
same number of elements namely m and their union is G. Therefore n = rm. Hence

m divides n. O

1.6 A counting principle

Definition 1.6.1. Let A and B be two subsets of a group G. We define

AB ={ab: a€ A bec B}.

If H and K are two subgroups of G, then H K need not be a subgroup of G.

For example, consider G = S3. H = {e,ps} and K = {e,ps}. Then H and K are

SUng'OUpS of 53' Also HK = {667 ep47€p37p3p4} = {€7p47p37p2}‘ NOW7 P4P2 = D5 ¢
HK. Hence HK is not a subgroup of Ss.

Theorem 1.6.2. Let H and K be subgroups of a group G. Then HK is a subgroup of
G if and only if HK = KH.

Proof. Suppose HK is a subgroup of G. Let kh € KH, where h € H and k € K.
Now h = he € HK and k = ek € HK. Because HK is a subgroup, it follows that
kh € HK. Hence, KH C HK. On the other hand, let hk € HK. Then (hk) ™' € HK,
so (hk)™' = hyk; for some hy € H and k; € K. Thus, hk = (hiky) ™' =k 'hy' € KH.
This implies that HK C KH. Hence, HK = KH.

Conversely, suppose HK = KH. Let hiky, hokos € HK, where hy,hy € H and
ki, ky € K. We show that (hiki)(hoks)™' € HK. Now ko € K and hy € H. Therefore,

17



ky'hy,! € KH = HK. This implies that ky 'hy' = hsks for some hs € H and k3 € K.
Similarly, k1hs € KH = HK, so kihs = hyk, for some hy € H and ky € K. Thus,

(hlkl)(hgk’z)_l = hlk‘lkz_lh;l(because (thQ)_l = ]{?2_1]12_1)
= h1k1h3k3<SUbStitute k;lhgl = hgkg)

= hihyksks € HK(SU.bStitU.te kihs = h,4/{54)

Hence, HK is a subgroup of G. O

Corollary 1.6.3. If H and K are subgroups of an abelian group G, then HK is a

subgroup of G.

Proof. Let + € HK. Then z = ab where a € H and b € K. Since G is abelian,
ab =ba and so v € KH. Hence HK C KH. Similarly KH C HK and HK = KH.

Hence HK is a subgroup of G. a

Theorem 1.6.4. Let H and K be finite subgroups of a group G. Then

|HK| = |H||K]

HNK -

Proof. Let us write A= HN K. Since H and K are subgroups of G, A is a subgroup
of G and since A C H, A is also a subgroup of H. By Lagranges theorem,|A| divides
|H|. Let n = %. Then [H : A] = n and so A has n distinct left cosets in H. Let
{214,254, ..., x,A} be the set of all distinct left cosets of A in H. Then H = U} ;x;A.

Since A C K, it follows that
We now show that x; K Nz, K = ® if ¢ # j. Suppose ;K Nx; K # ® for some i # j.

Then x;K = ;K. Thus, z; 'z; € K. Since x;'z; € H, ;7 'z; € A and so ;A = z;A.
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This contradicts the assumption that z1 A, ..., x,A are all distinct left cosets. Hence,
r K, ..., x, K are distinct left cosets of K. Also, |K| = |x;K| by Theorem 1.5.6 for all
1=1,2,--- ,n. Thus,

‘HK‘:’le‘+...+‘an‘:n|K’:|hwj(|: [HIIK| 0

Corollary 1.6.5. If H and K are subgroups of the finite group Gand o(H) > VG,
o(G) > VG, then HNK # {e}.

Proof. Since HK is asubset of G, o( HK) < o(G). Also o(HK) = OO({II%(KK)) > O(‘;ﬁ}().

This implies that o(H N K) > 1. O

Corollary 1.6.6. Suppose G is a finite group of order pq where p and q are prime

numbers with p > q. Then that G can have at most one subgroup of order p.

Proof. For suppose H, K are subgroups of order p. Clearly H N K is a subgroup of
G. By the Corollary 1.6.5, H N K # (e), and by Lagrange’s Theorem, o(H N K) = p

and so H N K = K = H. Hence there is at most one subgroup of order p. O

Problem 1.6.7. Let H be a subgroup of G anda € G. Then aHa™' = {aga™ : g € H}

is a subgroup of G.

Solution. Clearly ¢ = aea™t € aHa ' and so aHa™! # (. Now, let z,y € aHa ™ .
Then x = ahya™! and y = ahgea™! where hy, hy € H. Now, xy~! = (ahia™')(ahga ™)1 =

(ahia=Y)(ahyta™) = a(hihy;)a™' € aHa™'. Hence aHa™! is a subgroup of G.

1.7 Cylic group

Definition 1.7.1. Let G be a group and a € G. Then H = {a™ : n € Z} is a subgroup
of G.

H is called the cyclic subgroup of G generated by a and is denoted by (a).
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Examples 1.7.2. 1. In (Z,+), (a) = 2Z which is the group of even integers.

2. In the group G = (Z12,®), (3) = {0,3,6,9}, () = {0,5,10,3,8,1,6,11,4,
9,2,7} - Z12-

3. In the group G = {1,i, 1, —i}, (i) = {3,i*,,---} = {i,—1,—i,1} = G.

Definition 1.7.3. Let G be a group and let a € G, a is called a generator of G if
(a) = G.

A group G is cyclic if there exists an element a € G such that (a) = G.

Note 1.7.4. If G is cyclic group generated by an element a, then every element of G

is of the form a™ for some n € Z.

Examples 1.7.5. 1. (Z,+) is a cyclic group and 1 is the generator of this group.
Clearly —1 is also a generator of this group. Thus a cyclic group can have more

than one generator.
2. (nZ,+) is a cyclic group and n and —n are generators of this group.
3. (Zs,®) is a cyclic group and 1,3,5,7 are all generators of this group.

4. (Zy,®) is a cyclic group for all n € N; 1 is a generator of this group. In fact if

m € Zy and (m,n) =1 then m is a generator of this group.

5. G ={1,i,—1,—i} is a cyclic group under usual multiplication; 7 is a generator,
—i is also a generator of G. However —1 is not a generator of G since (—1) =

{1,-1} £G.

6. G = {1,w,w?} where w # 1 is a cube root of unity is a cyclic group, w and w?

are both generators of this group.
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7. In this group G = (Z; — {0}, ®), 3 and 5 are both generators. Here 2 is not a
generator of G since (2) = {2,4,1} # G.

8. Let A be a set containing more than one element. Then (o(A), A) is not cyclic;

for let B € o(A) be any element. Then BAB = ® so that (B) = {B, ®} # o(A).

9. (R,+) is not a cyclic group since for any z € R, (x) = {nzx: n€ Z} #R

Theorem 1.7.6. Any cyclic group is abelian.

Proof. Let G = (a) be a cyclic group. Let x,y € G. Then x = " and y = a® for

some r,s € Z. Hence xy = a"a® = a'* = a*™" = a®a” = yx. Hence G is abelian. a

Theorem 1.7.7. A subgroup of cyclic group is cyclic.

Proof. Let G be a cyclic group generated by a and let H be a subgroup of G. We claim
that H is cyclic. Clearly every element of H is of the form a” for some integer n. Let m
be the smallest positive integer such that a™ € H. We claim that a™ is the generator of
H. Let b€ H. Then b = a™ for some n € Z. Then b = a" = ™" = a™a” = (a™)%a".
Therefore a” = (a™)~9. Now, a™ € H. Since H is a subgroup, (a™)"? € H. Also,
be H. Clearly a" € H and 0 < r < m. But m is the least positive integer such that
a" € H. Therefore r = 0. Hence b = a™ = a? = (a™)?. Every element of H is a power

of ™. Thus H = (a™) and so H is cyclic. O

Theorem 1.7.8. Every group of prime order is cyclic.

Proof. Let G be a group of order p where p is prime. Let a € G and a # e. By above
theorem order of a divides p. The order of a is 1 or p. Since a # e order of a is p.

Hence G = (a) so that G is cyclic. O
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Theorem 1.7.9. Let G be a group of order n and a € G. Then a™ = e.

Proof. Let the order of a is m. Then m divides n and so n = mq. Thus, a" = a™? =

(@™ =¢e? =e. O

Definition 1.7.10. Let G be a group and let a € G. The least positive integer n(if it
exists) such that a™ = e is called the order of a. If there is no positive integer n such

that a™ = e, then the order of a is said to be infinite.

Examples 1.7.11.

1 2 3 1 2 3 1 2 3
1. Consider the group S3, p1 = . pr o= =
2 31 2 31 2 31
1 2 3 1 2 3 1 2 3 1 2 3
= ps and p3 = = =e.
31 2 31 2 2 31 1 2 3

In this case, 3 is the least positive integer such that p? = e. Thus p, is of order 3.

2. Consider (R*,-), From this sequence of elements 2,22 23, ... 2"

,.... In this case
there is no positive integer n such that 2" = 1 and (2) contains infinite numbers of

elements. Thus the order 2 is infinite.

Theorem 1.7.12. Let G be a group and a € G. Then the order of a is the same as

the order of the cyclic group generated by a.

Proof. Let a be an element of order n. Then a™ = e. We claim that e, a,a?,...,a" !

are all distinct. Suppose a" = a® where 0 <r < s<n. Thena®* " =eand s—7r <n

which contradicts the definition of the order of a. Hence e, a,a?,...,a" ! are n distinct
elements and (a) = {e,a,a?, ..., a" '} which is of order n.

If a is of infinite order, the sequence of elements e, a,a?,...,a" ', ... are all distinct
and are in (a). Hence (a) is an infinite group. O
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Theorem 1.7.13. Let GG be a group and a be an element of order n in G. Then a™ = e

if and only if n divides m.

Proof. Suppose n|m. Then m = ng where ¢ € Z and a™ = a"¥ = (a™)? = e? = e.
Conversely, let a™ = e. Let m = ng +r where 0 < r < n. Now a™ = ¢™"" =
a™a” = ea” = a". Thus a" = e and 0 < r < n. Now, since n is the least positive

integer such that a" = e, we have r = 0. Hence m = nq and so n|m. O

1.8 Normal Subgroup

Definition 1.8.1. A subgroup H of G is called a normal subgroup of G if ghg~' € H
for all g € G and h € H.

Example 1.8.2. 1. For any group G, {e} and G are normal subgroups.
2. In Ss, the subgroup {e, p1,p2} is normal.

3. In S5, the subgroup {e, p3} is not a normal subgroup.

Example 1.8.3. The alternating group A, is a subgroup of index 2 in S,, and hence

is a normal subgroup of 5,,.

Lemma 1.8.4. Every subgroup of an abelian group is a normal subgroup.

Proof. For any g € G and h € G, ghg~! = h € H and hence H is normal subgroup
of G a

Examples 1.8.5.
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1. nZ is a normal subgroup of (Z,+).
2. Every subgroup of (Z,,, ®) is normal.

3. Since any cyclic group is abelian any subgroup of a cyclic is normal.

Lemma 1.8.6. The intersection two normal subgroups of a group G is a normal

subgroup.

Proof. Let H and K be two normal subgroups of G. Then H N K is a subgroup of
G. Now, let a € Gand z € HNK. Then x € H and x € K. Since H and K are
normal ara™' € H and aza™! € K. Hence axa™! € HN K. Thus H N K is a normal

subgroup of G. a

Lemma 1.8.7. The center Z(G) of a group G is a normal subgroup of G.

Proof. Let Z(G) = {a: a € G,ax = za for all x € G}. Now let z € Z(G) and
a € G. Then ax = za and so x = aza™' € Z(G). Hence Z(G) is a normal subgroup of
G. O

Theorem 1.8.8. Let H be a subgroup of index 2 in a group G. Then H is a normal
subgroup of G.

Proof. If a € H then H = aH = Ha. If a ¢ H, then aH is a left coset different
from H. Hence H NaH = (). Further, since index of H in G is 2, H UaH = G. Hence
aH = G— H. Similarly Ha = G — H so that aH = Ha. Hence H is a normal subgroup
of G. a

Theorem 1.8.9. Let N be a subgroup of G. Then the following are equivalent.
(i) aNa™ = N for alla € G.

(111) aNa™' C N for alla € G.

(w) ana™' € N for alln € N and a € G.
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Problem 1.8.10. Let H be a subgroup of G. Let a € G. Then aHa™! is a subgroup
of G.

Solution. ¢ = aea™! € aHa ! and hence aHa™! # ®. Now, let x,y € aHa™'. Then
r = ahja™! and y = ahya™! where hy,hy € H. Now, zy~' = (ahja™')(ahoa™')™! =

(ahiaY)(ahy'a™) = a(hihy')a™! € aHa™'. -, aHa ' is a subgroup of G.

Problem 1.8.11. Show that if a group G has exactly one subgroup H of given order,

then H is a normal subgroup of G.

Solution. Let the order of H be m. Let @ € G. Then by above problem, aHa ™! is also
a subgroup of G. We claim that |H| = |[aHa™'| = m. Now, consider f : H — aHa™"
defined by f(h) = aha™'. fis 1-1, for, f(hy) = f(he) = aha ' = ahsa™" = hy = hs.
f is onto, for, let x = aha™' € aHa™'. Then f(h) = x. Thus f is a bijection.
o, |H| =|aHa™'| = m. But H is the only subgroup of G of order m. . aHa™' = H.

Hence aH = Ha. . H is a normal subgroup of G.

Problem 1.8.12. Show that if H and N are subgroups of a group GG and N is normal
in G, then HN N is normal in H. Show by an example that H N /N need not be normal
in G.

Solution. Let x € HN N and a € H. We claim that axza™* € H N N. Now,
z € Nand a € H = azra™' € N (since N is a normal subgroup). Also z € H and
a € H= axa™* € H (since H is a group). Hence ara™* € HNN. -, HNN is a
normal subgroup of H.

The following example shows that H N N need not be normal in G. Let G = Ss.
Take N = G and H = {e,p3}. Now H NN = H which is not normal in G.

Problem 1.8.13. If H is a subgroup of G and N is a normal subgroup of G then H N

is a subgroup of G.
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Solution. To prove that HN is a subgroup of G, it is enough if we prove that HN =
N H (theorem 1.9.17).

Let x € HN. Then x = hn where h € H and n € N. . x € hN. But
hN = Nh(since N is normal) . x € Nh. Hence x = nih where n; € N. . x € Nh.
Hence HN C NH. Similarly NH C HN. ©. HN = NH. Hence HN is a subgroup
of G.

Problem 1.8.14. M and N are normal subgroups of a group G such that MNN = {e}.

Show that every element of M commutes with element of N.

Solution. Let a € M and b € N. We claim that ab = ba.
Consider the element aba='b~!. Since a™! € M and M is normal, ba='b~! €
M. Also, since b € M, so that aba™'b~' € N. Thus aba™'b™' € M NN = {e}.

aba='b~! = e, so that ab = ba.

Theorem 1.8.15. A subgroup N of G is normal if and only if the product of two right

cosets of N is again a right coset of N.

Proof. Suppose N is a normal subgroup of G. Then
NaNb= N(aN)b= N(Nab) (since aN = Na)
= NNab = Nab (since NN = N).

Conversely suppose that the product of any two right cosets of N is again a right
coset of N. Then NaNb is a right coset of N. Further ab = (ea)(eb) € NaNb. Hence
NaNb is the right coset containing ab. ... NalNb = Nab.

Now, we prove that N is a normal subgroup of G. Let a € G and n € N. Then
ana™! = eana™! € NaNa™' = Naa™* = N. . ana ! € N. Hence N is a normal

subgroup of G. a
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Chapter 2

Unit 1: Counting Principle

2.1 Class equation for finite group

Definition 2.1.1. Let G be a group. If a,b € G, then b is said to be a conjugate of a
in G if there exists an element ¢ € G such that b = ¢ tac.

We shall write, for this, a ~ b and shall refer to this relation as conjugacy.

Lemma 2.1.2. Conjugacy is an equivalence relation on G.

Proof. Define a relation ~ on G by a ~ b if a is conjugate to b
Clearly a = e 'ae and so a ~ a.
If a ~ b, then b = z7az for some z € G, hence, a = (z7)"'b(z™") and since
y=ax"'€ G and a = y by, and hence b ~ a.
Suppose that a ~ b and b ~ ¢ where a,b,c € G. Then b = 2 taz, ¢ = y~'by for
1

some z,y € G. Substituting for b in the expression for ¢ we obtain, ¢ = y~*(z taz)y =

(xy)~ta(xy) and so a ~ c. Hence the conjugacy is an equivalence relation on G. O

For a € G, let C(a) = {z € G :a ~ x}. Then C(a), the equivalence class of a in
GG under our relation, is usually called the conjugate class of @ in G. From this, these

conjugacy classes form a partition of G and hence G = |, C(a).
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Definition 2.1.3. If a € G, then N(a), the normalizer of a in G, is the set N(a) =
{r € G:zxa=ax}.

N(a) consists of precisely those elements in G which commute with a.

Lemma 2.1.4. Let G be a group and Z(G) = {a: a € G and ax = za for all x € G}.
Then Z(G) is a subgroup of G. Here Z(G) is the center of G.

Proof. Clearly ex = ze = z for all x € G. Hence e € Z(G), so that Z(G) is non-
empty. Now, let a,b € Z(G). Then ax = za and bx = zb for all z € G. Now,
br = b = b~ (bx)b™! = b7 (zb)b™! = (b7'0)xb ! = b lx(bb!) = exb! = b lwe =
xb~! = b1

Now (ab Nz = a(b™'z) = a(zb™!) = (ax)b™! = (za)b™! = z(ab™'). Thus ab™!
commutes with every element of G and so ab~! € Z(G). Hence Z(G) is a subgroup of
G. 0

Lemma 2.1.5. Let G be a group and a € G. Let Cg(a) ={ v € G : ax = xza}. Then
Ce(a) is a subgroup of G. Here Cg(a) = N(a) is called the normalizer of a in G.

Proof. Clearly ea = ae = a. Hence e € N(a) so that N(a) is non-empty. Then

1

ax = za and ay = ya. Now, ay = ya = y ‘'a = ay ' !

Hence a(zy™!) = (ax)y™t =

1

(ra)y™' = x(ay™) = 2(y~'a) = (xy~')a. Hence xy~! commutes with a, zy~' € N(a)

and so N(a) is a subgroup of G. O

Lemma 2.1.6. Let H be a subgroup of G. Then N(H) ={g9 € G:gHg ' = H} is a

subgroup of G

Proof. Clearly aea™' = e € H and so e € N(H). Hence N(H) is non-empty. Let
z,y € N(H). Then zHx ' = H and yHy ' = H. This implies (zy)H (zy)™! =
v(yHy ')o~!' = xHxz™' = H. Hence N(H) is a subgroup of G. O
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Theorem 2.1.7. If G is a finite group, then the number of elements conjugate C, to

a in G is the index of the normalizer of a in G.

Proof. Let H = N(a), where a € G and L = {gH : g € G} be the set of all left
cosets of N(a) in G. Define f : L — C(a) by f(gH) = gag™' for all gH € L. Let
vH,yH € L. Suppose tH = yH. Then zy~' € H implies 2y 'a = axy™!. From
this, we get = (zy~tay = 7 taxy~'y implies ytay = z7'ax. Thus, f(zH) = f(yH)

and so f is well defined. Suppose f(zH) = f(yH). Then zar™' = yay' implies

1 1

x. From this, y~'za = ay~'x and so y~'x € H = N(a). Thus

y trarTtr =y lyay~

vH = yH, since y'o € H < xH = yH. Hence f is one to one.

For z € C(a), z = cac™! for some ¢ € G and by definition of f, we have z = cac™! =

f(cH) and f is onto. Hence C, = o(L) = o(G)/o(N(a)). O

Corollary 2.1.8. (Class Equation for finite group) Let G be a finite group. Then

o(G)=>" %, where this sum runs over one element a in each conjugate class.

Proof. By Lemma 2.1.2, for a € G, let C(a) = {x € G : a ~ x}. Then C(a), the
equivalence class of a in G under our relation, is usually called the conjugate class of a

in G. From this, these conjugacy classes form a partition of G and hence G = | C(a).
acG

By Theorem 2.1.7, ¢, = o(G)/o(N(a)) and

o(G) = o(C(a)) =>_ Ca=>_ 0(G)/o(N(a)).

Lemma 2.1.9. a € Z(G) if and only if N(a) = G. If G is finite, a € Z(Q) if and
only if o(N(a)) = o(G).

Proof. Ifa € Z(G), then za = ax for all x € G, whence N(a) = G and so o(N(a)) =
o(G). O
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Corollary 2.1.10. (Class Equation for finite group) Let G be a finite group. Then

o(G) = o(Z(G) + olG)

iz O (@)

where this sum runs over one element a in each conjugate class.

Proof. If a € Z(G), then ax = xa for all x € G, C(a) = {gag™ : g € G} = {a} and

hence C, = 1. By Class equation,

e olG) _ o(G)
A= 2 oyt 2 oy~ X S

aeZ(G) atZ(G)

Consider the group S5 = {e, (1, 2), (1, 3),(2,3), (1,2,3), (1, 3,2)}. We enumerate the
conjugate classes: C(e) = {e}, C(1,2) = {g7*(1,2)g : g € S5} = {(1,2),(1,3),(2,3)}
and C'(1,2,3) ={(1,2,3),(1,3,2)}

Hence the class equation for S3 is C, + C19) + C123) = 1 +2+ 3

Theorem 2.1.11. If o(G) = p"™ where p is a prime number, then Z(G) # (e).

Proof. Since N(a) is a subgroup of G, o(N(a)) divides o(G) = p™ and so o(N(a)) =

p™e. Also a € Z(G) if and only if n, = n. Let m = o(Z(G)). Then by Corollary 2.1.10,

pt=0o(G)=m+ > (p"/p™). If a ¢ Z(G), then n, < n, p divides p" — p" and so
adZ(G)

p divides ) p" ™. Hence p divides p" — > p" ™ =m andso Z(G) # {e}. O
ag Z(G) agZ(G)

Corollary 2.1.12. If o(G) = p? where p is a prime number, then G is abelian.

Proof. Our aim is to show that Z(G) = G. By Theorem 2.1.11, Z(G) # (e) is a
subgroup of G so that o(Z(G)) = p or p>. Suppose that o(Z(G)) = p; let a € G, a ¢
Z(G). Thus Z(G) C N(a). Since a € N(a) and by Lagrange’s Theorem, o(N(a)) > p,

o(N(a)) = p* and so a € Z(G), a contradiction. O
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Theorem 2.1.13. (Cauchy’s Theorem for abelian group) If G is a finite abelian group,

p is a prime number and p|o(G), then G has an element of order p.

Theorem 2.1.14. (Cauchy’s Theorem) If G is any finite group, p is a prime number

and plo(G), then G has an element of order p.

Proof. To prove its existence we proceed by induction on o(G). If o(G) = 2, then
G = Zs and so o(1) = 2. If o(G) = Zs, then o(1) = 0(2) = 3. We assume the theorem
to be true for all groups 7" such that o(T) < o(G).

Let W be a proper subgroup of G. Then o(W) < o(G) If p divides o(IV), then by
our induction hypothesis, there exist a € W such that a? = e and a # e.

Suppose p doesnot divide o(W) for any proper subgroups W of G. If a ¢ Z(G),
then N(a) is a proper subgroup of G, p doesnot divide o(N(a)) and so p divides

o(G@)/o(N(a)). From this, we get p divides > % sopdivides o(G)— > %
agZ(G) ¢ Z(G)

Hence p divides o(Z(G)). Since Z(G) is abelian and by Cauchy’s theorem for abelian

group 2.1.13, there exist an element x € Z(G) such that z? = e. O
We conclude this section with a consideration of the conjugacy relation in a specific
class of groups, namely, the symmetric groups S,,.

Given the integer n we say the sequence of positive integers ny, no, ..., n, constitute
a partition of n if n = ny +ny + -+ + n,. Let p(n) denote the number of partitions of

n. Let us determine p(n) for small values of n:

= 1 since 1 =1 is the only partition of 1,

since2=2and 2=1+1,

Some others are p(5) = 7, p(6) = 11, p(61) = 1,121, 505. There is a large mathematical

literature on p(n).
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Lemma 2.1.15. The number of conjugate classes in S, is p(n), the number of parti-

tions of n.

2.2 Sylow’s Theorems

Before entering the first proof of the theorem we digress slightly to a brief number-
theoretic and combinatorial discussion. The number of ways of picking a subset of k

elements from a set of n elements can easily be shown to be

(v) = wosm

If n = p®m where p is a prime number and (p,m) = 1, and if p*|n but p**™ t n,
consider
(p;gz) _ o (p:m)i _
) (prm — p*)!
prm(ptm —1)--- (p*m — i)+ (p*m — p* + 1)
A R RN VI TR

Theorem 2.2.1. (Sylow’s Theorem) If p is a prime number and p*|o(G) where p is

prime and « is non-negative integer, then G has a subgroup of order p®.

Proof. We prove, by induction on the order of the group G, that for every prime p
dividing the order of G, G has a p-Sylow subgroup. If o(G) = 2, then G = Z,, then
the group certainly has a subgroup of order 2, namely itself. So we suppose the result
to be correct for all groups of order less than o(G).

From this we want to show that the result is valid for G. Suppose, then, that
p"o(G), p"o(G), where p is a prime, m > 1. If p™|o(H) for any proper subgroup
H of G, then o(H) < o(G) and by the induction hypothesis, H has a subgroup 7" of
order p. However, since T" is a subgroup of H, H is a subgroup of GG, T' is a subgroup

of GG.
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We may assume that p™ doesnot divide o( H) for any proper subgroup H of G. We
restrict our attention to a limited set of such subgroups. If a ¢ Z(G), then N(a) # G
and so p™ does not divide o(N(a)), but p™ divides o(G)/o(N(a)). Thus, p™ divides

> o(G)/o(N(a)). Since p divides o(G), p divides o(G) — > 0o(G)/o(N(a)) and
gizg()cziivides 0o(Z(@)). By Cauchy’s Theorem, there exist anailze(ri)ent b #ein Z(Q)
such that bP = e.

Let B = (b), the subgroup of G generated by b. Then o(B) = p. Since b € Z(G),
B is normal in G. Hence G/B is a group and o(G/B) < o(G) and p™~ ! divides o(G).
By the induction hypothesis, G/B has a subgroup P/B of order p™ !, where P is a
subgroup of G. Thus p™! = o(P/B) = o(P)/o(B) = o(B)/p and so o(P) = p™. O

In view of Sylow’s Theorem, we have the following.

Corollary 2.2.2. If p"|o(G), p™ ' { o(G), then G has a subgroup (p-Sylow subgroup)

of order p™.
Let n(k) be defined by p™® |(p*)! but p"®+! does not divide (p*)!.

Lemma 2.2.3. n(k) =1+p+---+ptL

Proof. If k£ = 1 then p! = 1.2...(p — 1).p, it is clear that p|p! but p? t p!. Hence
n(1) = 1. Clearly, only the multiples of p; that is, p,2p, ..., p"* !p. In other words n(k)
must be the power of p which divides (2p)(3p)--- (p*'p) = p** ' (p*!)!. But then
n(k) = p=t +n(k —1).

Similarly, n(k—1) = n(k—2)+p*~2, and so on. Write these out as n(k)—n(k—1) =
PP n(k—1)—n(k—2)=p"2,...,n(2) —n(l) = p, n(1) = 1. Adding these up, with

the cross-cancellation that we get, we obtain n(k) =1+ p+p?+--- +p* L. O

We are now ready to show that S,» has a p-Sylow subgroup; that is, we shall show

a subgroup of order p"*) in 5.
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Lemma 2.2.4. Let p be a prime number. Then S, has a p-Sylow subgroup.

Proof. We go by induction on k. If k = 1, then the element (1 2 ... p), in S, is of
order p, so generated a subgroup of order p. Since n(1) = 1, the result certainly checks
out for k = 1.

Suppose that the result is correct for £k — 1; we want then must follow for k.

I elements as follows:

{17 2a s >pk71}a {pkil + kail + 27 R 2pk71}7 e a{(p - 1)pk71 + 1> te 7pk}

The permutation o defined by o = (1, p*~1+1,2p* 141, ..., (p—1)p* 1 +1) - - (4, p" 1+

Divide the integers 1,2,...,p" into p clumps each with p*~

208 g (p—DpEF 1) (PR 208, - (p — 1)pF L pF) has the fol-
lowing properties: o = e and If 7 is a permutation that leaves all ¢ fixed for i >
p*~t(hence, affects only 1,2,...,p""1), then 0-'70 moves only elements in {p*~! +
1,p*1+2,...,2p" 1}, and more generally, o(—5)707 moves only elements in {jp*~! +
LgpPt+2,...,(+ 1)pFt}h

Consider A = {7 € Sy : 7(i) =i if ¢ > p"'}. Then A is a subgroup of S, and

1

elements in a can carry out any permutation on 1,2,...,p*"'. From this it follows

easily that A = S ,—1. By induction hypothesis, A has a subgroup P; of order prk=1),
Let T = Py(c7'Pio)(072Py0?)--- (6~ PV PoP~!) where P, = 07 'P,o’. Each P,

n(k—1)

is isomorphic to P; so has order p . Also elements in distinct P;* influence non

overlapping sets of integers, hence commute. Thus T is a subgroup of Sy. Since
PPy =(e)if 0<i#j<p—1,0(T)=o(P) =pmt.

Since o = e and 0 'Pio’ = P, we have 0 'To = T. Let P = {0t : t €
T,0 < j<p-—1}. Since 0 ¢ T and 07'To = T, T is a subgroup of S,. and
o(P) = po(T) = p p"k=0p = prk=1p+1 Tt js pr=Dpt1 But n(k—1) = 14p+-- -+p* 2,
hence pn(k —1) +1=14p+--- +p* 1 = n(k). Since o(P) = p"®, P is a p-Sylow

subgroup of Sx. O

Definition 2.2.5. Let GG be a group, A, B subgroups of G. If z,y € G define x ~ y if

y = axb for some a € A,b € B.
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Lemma 2.2.6. The relation defined above is an equivalence relation on G.

Proof. Let z,y € G. Then x = exe, since e € AN B. Hence x ~ x. Suppose = ~ y.
Then y = axb for some a € A and b € B. This implies x = a~'yb~! and by definition,

Yy~ x. U

For z € G, the equivalence class of z € G is the set AzB = {azbla € A,b € B}.
These equivalence classes form a partition of G and so G = |J AzB. We call the set

z€G

AxB a double coset of A, B in G.

Lemma 2.2.7. If A, B are finite subgroups of G, then
o(A)o(B)
o(AxzB) = o(AN 2Ba1)
Proof. Define T : AzB — AxzBx~! given by T(axb) = axbx~" for all axzb € AxB.
Let axb,cxd € AzB. Suppose T(axb) = T(cxd). Then axbr™' = crdx™' and by
cancellation law, we have axb = cxd and hence T is one-to-one. For any y € ArBz ™!,

y = axbr™' = T(axb) and hence T is onto. From this, we get o(AzB) = o(AzBz™!).

Since xBx ! is a subgroup of G, of order o(B), o(AxB) = o(AzBz™!) = % =

o(A) o(B)
o(AnzBz~1)* =

Lemma 2.2.8. Let G be a finite group and suppose that G is a subgroup of the finite
group M. Suppose further that M has a p-Sylow subgroup Q. Then G has a p-Sylow
subgroup P. In fact, P = G NxQxz~" for some x € M.

Theorem 2.2.9. (Second Part of Sylow’s Theorem) If G is a finite group, p a prime

and p"|o(G) but p" 't o(G), then any two subgroups of G of order p" are conjugate.
Proof. Let A and B be subgroups of (G, each of order p". We want to show that

A = gBg~! for some g € G. Decompose G into double cosets of A and B; G = |J AxB.

zeG
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Now, by Lemma 2.2.7,

o(A)o(B)
o(AzB) = (AN 2By

If A+ xBx~! for every x € G, then o(ANzBx~') = p™ where m < n. Thus

o(A)o(B)  p™

P
o(ArB) = — — =0
p p

and 2n —m > n+ 1. Since p" ™ |o(AzB) for every z and o(G) = Y. o(AxB), we would
xelG
get the contradiction p"*t|o(G). Thus A = gBg~! for some g € G. From this, we

conclude that, for a given prime p, any two p-Sylow subgroups of G are conjugate. O

Lemma 2.2.10. The number of p-Sylow subgroups in G equals o(G)/o(N(P)), where

P is any p-Sylow subgroup of G. In particular, this number is a divisor of o(G).

Proof. Let P be a p-Sylow subgroup of G. Then N(P) ={ge€ G:gPg ' =P} isa

subgroup of G and by Theorem 2.1.7, we get the required result. a

Theorem 2.2.11. (Third Part of Sylow’s Theorem) Let G be a finite group and p|lo(G),

where p is prime. Then the number of p-Sylow subgroups in G is of the form 1+ kp.

Proof. Let P be a p-Sylow subgroup of G. We decompose G into double cosets of P
and P. Thus G = |J PxP. By Theorem 2.2.7,

zeG

o(P)?

o(PzP) = o(PAaPr )

Thus, if PN xzPz~' # P, then p"*|o(PxP), where p" = o(P). If x ¢ N(P), then
p" T o(PzP). Also, if x € N(P), then PxP = P(Px) = P*x = Pz, so o(PzP) = p"

in this case.
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Now

o(G)= > o(PzP)+ >  o(PzP),

zeN(P) 2¢N(P)
where each sum runs over one element from each double coset. However, if x € N(P),
since PxP = P, the first sum is merely }° v p o(Pz) over the distinct cosets of P
in N(P). Thus this first sum is just o(N(P)). We saw that each of its constituent

terms is divisible by p"*!, hence

P Z o(PxP).

z¢N(P)

We can thus write this second sum as

Z o(PzP) = p"u.
2¢N(P)

Therefore o(G) = o(N(P)) + p"u, so

Now o(N(P))|o(G) since N(P) is a subgroup of G, hence p"*'ulo(N(P)) is an
integer. Also, since p"™! { o(G), p"*! can’t divide o(N(P)). But then p"*u|o(N(P))
must be divisible by p, so we can write p""lu|o(N(P)) as kp, where k is an integer.
Hence, the number of p-Sylow subgroups of G is

o(G)

Wzl—i—kp.

and by Lagrange’s Theorem, 1 + kp divides o(G). O

Problem 2.2.12. Let G be a group of order pqr, where p < q < r are primes. Then

some Sylow subgroup of G is normal.
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Proof. Suppose that no Sylow subgroup of G is normal. Then the number of p-Sylow
subgroup of G is 1+kp and 1+ kp # 1 divides gr. Since ¢ and r are distinct, 1+kp = ¢,
1+ kp=rorl+kp=qgr. From this, we get G has at least ¢q(p — 1) elements of order
q(p — 1) elements of order p.

Also the number of ¢-Sylow subgroups of Gis 1+ kq=p, 1+ kq=1ror 1+ kq = pr
and so G has at least r(¢—1) elements of ¢. Simillarly, G has at least pg(r—1) elements
of order r. Therefore, o(G) > q(p—1)+r(qg—1)+pq(r—1)+1 = pg—q+rq—r+pgr—pq >

pqr, a contradiction. Hence some Sylow subgroup in G is normal. O
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Chapter 3

Unit 2

3.1 Solvable group

Definition 3.1.1. A group G is said to be solvable(or soluble) if there exists a chain

of subgroups

such that each H; is a normal subgroup of H;,; and the factor groups H,; i/H; is
abelian for every ¢ =0,...n — 1.

The above series is referred to as solvable series of G.
Example 3.1.2. Any abelian group is solvable.
Example 3.1.3. Any non-abelian simple group is not solvable.

Definition 3.1.4. Let G be a group and a,b € G. Then aba'b~! is called the
commutator of a and b and is denoted by [a,b]. Let A = {aba 07! :a,b€ G} =

{la,b] : a,b € G} be the set of all commutators of elements in G.
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Definition 3.1.5. Let GG be a group. The subgroup of GG generated by the commutators
of elements of G is called the commutator subgroup of G. The commutator subgroup
of a group G is denoted by G’ or GV or [G,G]. Note that commutator subgroup is

also called derived subgroup of G.

Theorem 3.1.6. Let G be a group. Then G' = {e} if and only if G is abelian.

Proof. Let G’ be the commutator subgroup of G. Assume that G’ = {e}. Then by
Definition 3.1.5, aba='b~! = e for all a,b € G and hence ab = ba for all a,b € G. Hence
G is abelian.

Conversely, assume that G is abelian. Then ab = ba for all a,b € G which implies

ab (ba)™" = aba='b~! = e for all a,b € G and hence G’ = {e}. O

Theorem 3.1.7. Let G be a group. Then

(1) G" is a normal subgroup of G.

(17) G/G" is abelian.

(1ii) If H is a subgroup of G, then G/H is abelian and H is a normal subgroup of G
if and only if G' C H.

Proof. (i) Let g € G and v € . Then = ¢; ...c, where ¢; s are commutators of

elements in G and hence ¢; = aibiajlb;l for some a;,b; € G foralli=1,...,n. Now
=g(a...c) g
=g (alblal - apbpa, Ly~ 1) g’1

= (9arg7") (gbrg™") (gar'g™") (gbr'g™") - (9ang™")

(9bng™") (90, 97") (gby'g™")

Hence gxg~—! € G’ and so G’ is normal subgroup of G.
(ii) By (i), G/G" is a group and also aba™'b~! € G’ for all a,b € G. From this, we get
abG" = baG' for all a,b € G and so aG'bG’ = bG'aG’ for all a,b € G. Hence G/G’ is

abelian.
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(77i) Assume that G/H is abelian and H is a normal subgroup of G. Then «H yH =
yH zH for all z,y € G and so (zy) (yz)~" € H for all z,y € G. Thus zyz~'y ' € H
for all z,y € G and so G' C H.

Conversely, assume that G’ C H. For any g € G and = € H,
grg~! = grg~'z~'x € H, which shows that H is a normal subgroup of G. Since
G' C H,aba 'b! € H for all a,b € G and so aH bH = bH aH for all a,b € G. Hence
G/H is abelian. O

Example 3.1.8. Forn > 3,

N
3

if n is odd,
Dy, =

N

w3

if n is even

Proof. Let Dy, = {1,r,7% ..., r" 1 s sr,... sr" 1}. Then

Z, if nis odd,

Z% if n is even.

Hence it is enough to prove that D) = (r?).
As [r,;s] = rsr7ts™! = r? € D) and so (r?) C D}, is clear. Also D) /(r?) is
abelian and (r?) is a normal subgroup of Dy,. By Theorem 3.1.7(74i), D5, C (r?) and

hence D) = (r?). O

Example 3.1.9. Q; = {£1}

Proof. Let Qs = {£1,+i,+j,+k} be a non-abelian group of order 8. Then by
Theorem 3.1.6, {1} is not a commutator subgroup of Qs. Note that {+1}, {£, i},
{£1,+5} and {£1, £k} are nontrivial normal subgroup of Qg. By Remark 7?7, {£1}

is the commutator subgroup of Qs. a
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Example 3.1.10. S/, = A,, n >3

Proof. A, is a normal subgroup of S, and |A,| = "3' Then [S,, : A,] = 2 and so
Sn /A, is abelian. By Theorem 3.1.7(iii), S/, C A,,. Since A, is generated by 3-cycles for
n > 3, it is enough to prove that every 3-cycle in A,, is the commutator of some element
in S,,. Let (a b c) be a 3-cycle in A,. Then (a b c) = (a b)(a c)(a b)) a c)™ € 5.

Hence A,, C S] and so S;, = A,. 0

Theorem 3.1.11. If G is a non-abelian simple group, then G is G’ = G.

Proof. Since G is simple, {e} and G are only normal subgroup of G. Since G is

non-abelian, by theorem 3.1.6, G’ # {e} and so G' = G. O

Example 3.1.12. A/ = A,, n > 5.

Proof. Clearly A, is simple non-abelian group for n > 5. By Theorem 3.1.11, A] =

A, n>5. O

Example 3.1.13. A, =V,

Proof. Let Ay ={e,(123),(124),(134),(234),(132),(142),(143),

(243),(12)(34),(13)(24),(14)(23)}. Let H="{e,(12)(34),(13)(24),(14)(23)}
be a subgroup of Ay. Then [A; : H] = 2, H is a normal subgroup of A, and so Ay/H
is abelian. By Theorem 3.1.7(éi7), A} C H. For any (a b)(c d) € H, (a b)(c d) =
(@abc)abd)(abc) ™ abd ™ e A, Hence A}, = H. Since every element in H other

than identity is of order 2, H is isomorphic to V,. Hence A} = V. a
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Remark 3.1.14. Let G be a group. G’ is the commutator subgroup of G, which is
also denoted by G, G| the commutator subgroup of G is the 2"¢ commutator
subgroup of G. In general G is the n'* commutator subgroup of the group G. If
G = {e} for some positive integer n, the smallest such positive integer n is the

commutator length or derived length of the group G.

Theorem 3.1.15. Let G be a group. Then G is solvable if and only if G™ = {e} for

some positive integer m.

Proof. Assume that G is solvable. Then there exists a series Go = {e} C ... C G, =

Giv
G such that G; <G, and

is abelian for every ¢ = 0,...,n — 1. By Theorem

3.1.7(¢i4), G,y C G, for every i = 0,...,n — 1. Thus G’ C G,_1. By Theorem ?7?,
G C G!,_,. Again by Theorem 3.1.7(éii), G!,_; C G,—2 and so G® C G,_ and

n—1
then by Theorem ??, G C G,_;. Proceeding like this, a stage is reached where
G C Gy = {e}. Thus G'™ = {e} for some positive integer m < n.

Conversely, assume that G = {e} for some positive integer m. Consider the
series G = {e} C GMm~D C ... C G = G®. G*Y is the commutator subgroup of
G for every i = 0,...,m — 1. Hence by Theorem 3.1.7(i) and (ii), G+ < G® and

G

GG+
and G is solvable. O

is abelian for every ¢ = 0,...,m — 1. Thus the series is a solvable series of G

Example 3.1.16. Qg is solvable.

Proof. Let Qg = {*1,+i,£j,£k}. Then by Example 3.1.9, Qi = {£1}, which is
abelian. Hence by Theorem 3.1.6, Qg) = {e} and by Theorem 3.1.15, Qg is solvable.

O

Example 3.1.17. D, is solvable.
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Z, if nis odd,
Proof. By Example 3.1.8, D), =

Lo if 1 is even.
Then D}, is abelian. By Theorem 3.1.6, Déi) = {e}. Hence by Theorem 3.1.15, Dy, is

solvable. O

Example 3.1.18. For n > 5, A, is not solvable.

Example 3.1.19. For n > 5, .S, is not solvable.

Proof. By Example 3.1.10, S/ = A,. But by Example 3.1.12, A/ = A,. Hence
S — A, for every positive integer m. Hence by Theorem 3.1.15, S,, is not solvable.

O

Example 3.1.20. A, is solvable.

Proof. Clearly {e} C V, C A, is a solvable series for A,, hence is solvable. O

Example 3.1.21. S3 and S, are solvable.

Proof. From Example 3.1.10, S; = Az and so Sj is abelian. By Theorem 3.1.6,
S;gQ) = {e}. Thus by theorem 3.1.15, S5 is solvable.

{e} SV, CACS,

is a solvable series for S;. Hence, S, is solvable. O

Theorem 3.1.22. Subgroup of a solvable group is solvable
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Proof. Let G be a solvable group and H be a subgroup of GG. Since G is solvable and
by Theorem 3.1.15, G = {e} for some positive integer n and so H' C G', H® C G
and so on. In particular, H™ C G™ = {e}. Thus H™ = {e} for some positive

integer m < n. Hence by Theorem 3.1.15, H is solvable. a

Theorem 3.1.23. Homomorphic image of a solvable group is solvable.

Proof. Let G be a solvable group and let f : G — K be a homomorphism. Let
a,b € G. Then aba™'b~' € G', f(a),f(b) € f(G), f(aba™'b7') € f(G') and so
Fa)f @) fa) f(b) " e (f(G)). Since f is a homomorphism, for every a,b € G,

f(aba™'b71) = f(a) £ (b) f (@)~ F(B)"

. Hence (f (G))" = f(G"). Since G is solvable and by Theorem 3.1.15, there exists a
positive integer n, such that G™ = {eg}. (f(G)) = f(G’) implies that (f (@)™ =
f(G™) = f(eq) = ex. Hence by Theorem 3.1.15, f (G) is solvable. O

Theorem 3.1.24. Quotient group of a solvable group is solvable.

Proof. Let G be a solvable group and N be a normal subgroup of G. Then G/N is a
group. Define f: G — G/N by f(g) = gN. Then f is a natural homomorphism and
f(G) = G/N. By Theorem 3.1.23, G/N is solvable. O

Remark 3.1.25. Let GG be a solvable group. Suppose H is a subgroup of G with
H # {e}. Then H # H'.

Proof. Suppose H = H', H® = H' = H. Then H™ = H for any positive integer n
and also by Theorem 3.1.15, H is not solvable, which gives a contradiction to Theorem

3.1.22. Hence H # H'. O
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Theorem 3.1.26. Let G be a group and N be a normal subgroup of G. Then G 1is
solvable if and only if N and G/N are solvable.

Proof. Assume that G is solvable. Then by Theorem 3.1.22 and Theorem 3.1.24, N
and G /N are solvable.

Conversely, assume that N and G/N are solvable. Then there exists two series,

No={e}C- CN,=N

and
GO N Gk G
Ne—=—C...C — = —
N N~ - N N
b that Ny < Nops o i abelian & =0 Land o o O
suc at N; < ,-+1,Tilsaelan orevery it = 0,...,m — 1 an Nq N
Giv1/N G Git G
GN is abelian for every 7 = 0,...,k — 1. Since ¥ 4w gNhNg™ N € N
which implies that ghg~' € G; for every g € Gi;1 and h € G;. Hence G; < Gy, for
every 1 =0,...,n—1.
Giy1 G /N
Now, GG;, N<G;,1 and N <G, and by third theorem of isomorphism &
G; G;/N
since 2 i abetian, <o is abelian, Th
. Since GN is abelian, Tils abelian. Thus

N=GyC- CGy=G

Gi+1

is a series such that G; < G;;, and is abelian for every i = 0,...n — 1. Hence

%

{e}=N,C---CNp,=N=GyC---CG,4

is a solvable series of GG and so G is solvable. O
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3.2 Direct Product

Definition 3.2.1. Let n > 1 be any positive integer and let (Gy,*;),...,(Gp,*,) be

any n groups. Let

G:GlXGQX"'XGn:{(Z‘l,...,(L’n)ZZEiEGi}

Define x on G by (x1,...,2n) % (Y1, -+, Yn) = (T1 %1 Y1, T2 *2 Yo, - - ., Tpy *kp Yp ). Then
(e1,e9,...,e,) is an identity element of GG, where each e; is identity element of G;. Also
(7t 25, .. 2;Y) is an inverse of (z1,...,7,) in G. Hence (G, %) is a group.

We call this group G the external direct product of Gy, ..., G,

Definition 3.2.2. Let G be a group and Ny, No, ..., N, normal subgroups of G such

that

(i) G=N1Ny...N,.

(ii) Given g € G then g = mymsy...m,, m; € N; in a unique way.
We then say that G is the internal direct product of Ny, Na, ..., N,.

Theorem 3.2.3. Let G be a group and suppose that G is the internal direct product
of Ny,...,N,. Let T = Ny X Ny X --- X N,. Then G and T are isomorphic.

Proof. Define the mapping ¥ : T'— G by

W((by,b,...,b,)) = biby-- by,

where each b; € N;, i = 1,...,n. We claim that ¥ is an isomorphism of T"onto G. If x €
G then x = ayas . . .a, for some a; € Ny,...,a, € N,. But then ¥((ay,as,...,a,)) =
a1as . ..a, = x and hence ¥ is onto.

The mapping ¥ is one-to-one by the uniqueness of the representation of every ele-

ment as a product of elements from Ny, ..., N,. For, if U((ay,...,a,)) = V((c1,...,cn)),
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where a; € N;, ¢; € N;, for i = 1,2,...,n, then, by definition, aas...a, = cica...cp.
The uniqueness in the definition of internal direct product forces a; = ¢1,a2 = ¢o,...,a, =
¢,. Thus ¥ is one-to-one.

If X =(ay,...,a,), Y = (b1,...,b,) are elements of 7' then
U(XY)=U((ar,...,a,)(b1,..., b)) = W(aby, asbs, ..., a,b,) = aibiashs ... ayb,. Thus
However, by Lemma 3.2.4, a;b; = ba; if i # j. This implies that aib;...a,b, =
a1as ... azb1bs ... b,. Thus UV(XY) = ajas...a,b1be...b,. But we can recognize
ajasy . ..a, as V((ay,as,...,a,)) = V(X) and byby... b, as U(Y). Hence ¥(XY) =
U(X)U(Y). O

Lemma 3.2.4. Suppose that G is the internal direct product of Ny,...,N,. Then for
i#j, NyNN; ={e}, and if a € N;, b € N; then ab = ba.

Proof. Suppose that x € N;NN;. Then we can writez asx = e1...€;_12€j41...€j...¢€y
where e; = e, viewing x as an element in N;. Similarly, we can write z as = =
€1...€i...6_1T€;11 ...6y, Where e, = e, viewing = as an element of N;. But every
element and so, in particular x has a unique representation in the form mymsy...m,,
where m; € Ny,...,m, € N,. Since the two decompositions in this form for z must
coincide, the entry from N; in each must be equal. In our first decomposition this entry
is z, in the other it is e; hence z = e. Thus N; U N; = {e} for i # j.

Suppose a € N;, b € N;, and i # j. Then aba~! € N; since N; is normal; thus
aba~'b~' € Nj;. Similarly, since a=! € N;, ba™'b~' € N;, whence aba~'b"! € N;. But
then aba™'b~' € N; N N; = {e}. Thus aba™'b~" = e; this gives the desired result

ab = ba. O

Remark 3.2.5. If G = G| x --- x (G, is the external direct product of Gy,...,G,,
then H; = {(e1,..., € 1,%i,€i11,...,€,) € G: x € G;} is a normal subgroup of G and

by definition 3.2.2 and Lemma 3.2.4, GG is internal direct product of Hy,..., H,.
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Theorem 3.2.6. Let G be a finite abelian group. Then G is isomorphic to the direct

product of its Sylow subgroups.

Proof. Let o(G) = pi---pfr > 1, where py,...,p, are distinct primes. Since G
is abelian, all p-Sylow subgroups are normal and so G has unique p-Sylow subgroup
for all prime p divides o(G). Let H; be p;-Sylow subgroup of G and o(H;) = pfi for
i =1,2,...,7. Then H; is normal subgroup of G, H; N H; = {e} for all ¢ # j and
O(HiHj)pfipfj. By Theorem 1.6.4,

: i1
o(H, - H,) = o(H, - H,_)H,) = ~ = 0(G).

. Since each H; is normal, H; - -- H, is subgroup of G and so G = H; --- H,. Hence, by

Theorem 3.2.3, GG is the external direct product of Hy, ..., H,. O

Example 3.2.7. Let G = {e,a,b,c} be the Klein 4-group. Then H = {e,a} and
K = {e, b} are normal subgroups of G, H N K = {e} and HK = G. Hence G is the

internal direct product of H and K and so Theorem 3.2.3, G = Zy X Zs.

Example 3.2.8. Let S3 = {e, (1 2 3),(1 3 2),(1 2),(1 3),(2 3)}. Then
H = {e,(1 2 3),(1 3 2)} is unique nontrial proper normal subgroup of S3 and so

S5 is not the internal direct product of its normal subgroups.

3.3 Finite abelian groups

Our first step is to reduce the problem to a slightly easier one. If we knew that each
such Sylow subgroup was a direct product of cyclic goups we could put the results
together for these Sylow subgroups to realize G as a direct product of cyclic groups.
Thus it suffices to prove the following theorem for abelian groups of order

p" where p is a prime.
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Theorem 3.3.1. Let G be an abelian group of order p", where p is prime. Then G is

the direct product cyclic groups.

Proof. Let a; be an element in G of highest possible order, p™, and let A; = (ay).
Pick by in G such that by, the image of by in G’ = G/A;, has maximal order p". Since
the order of b, divides that of by, and since the order of a; is maximal, we must have that
ni > ne. In order to get a direct product of A; with (bg) we would need A; N (bg) = (e);
this might not be true for the initial choice of by, so we may have to adapt the element
by. Suppose that A;N(by) # (e); then, since by"> € A; and is the first power of by to fall
in A; we have that by"2 = ai. Therefore (a})?" ™ = (b5°)P" " = bh™ = e, whence

"2 and SO P, i

(a})P"'™" = e. Since a; is of order p™ we must have that p™ |ip
Thus, re-calling what i is, we have b5 ~ = ai = a?’"*. This tells us that if ay = a;7b,
then aj * = e. The element a, is indeed the element we seek. Let Ay = (ay). We claim
that A; N Ay = (e). For, suppose that a} € Ay; since ay = aj”by, we get (a;7by)t € Ay
and so b5 € A;. By choice of by, this last relation forces p"2|¢, and since ag’” = e we
must have that a} = e. Hence A; N Ay = (e).

We continue one more step in the program we have outlined. Let b3 € G map
into an element of maximal order in G/(A;As). If the order of the image of b3 in
G/(A1As) is p", we claim that ng < ny < n;. By the choice of ny , bf;nQ € A, so
is certainly in A;A;. Thus n3 < ny. Since b§n2 € A A, b‘§n2 = a''a®?. We claim
that p™|i; and p™|iy. For, b}~ € Ay hence (al'a2)p™ " = (b5 )" =t * € A,.

This tells us that a2”™ ™

€ A; and so p™|igp™ "3, which is to say, p™|is. Also
V" = e, hence (alal2)p™ " = b = e; this says that o )p™ =™ € A; N Ay = (e),
that is, a!”" " = (e). This yields that p™|iy. Let 4, = j1p™ , iy = jop™; thus
bsp"s = a{lpn?’ a%épns. Let a3 = afjla??bg, As = (a3); note that agnsa = e. We claim that
A3 N (A1 Ay) = (e). Forif af € AjAy then (a;” ay72bs)t € Ay Ay, giving us by € Ay As.
But then p™|t, whence, since a = = e, we have ay, = e. Thus, A3 N (A;A;) = (e).

Continuing this way we get cyclic subgroups A; = (a1), As = (as), ..., Ax = (ax) of

order p™, p™2 ... p™ respectively, with ny > ny > --+ > n; such that G = A1 Ay ... Ay
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and such that, for each i, A; N (A1Ay... A;_1) = (e). This tells us that every z € G
has a unique representation as « = alaj...a) where a| € Ay,...,a}, € Ag. Hence, G

is the direct product of the cyclic subgroups Ay, As, ..., As. a

Definition 3.3.2. If G is an abelian group of order p™, p a prime, and G = A; x Ay X
- X A where each A; is cyclic of order p™; with ny > ny > ...n, > 0, then the

integers nq,no, ..., n; are called the invariants of G.

Theorem 3.3.3. The number of non-isomorphic abelian groups of order p", p a prime,

equals the number of partitions of n.

Corollary 3.3.4. The number of non-isomorphic abelian groups of order pi* ...pS"
where the p; are distinct primes and where each o; > 0, is p(aq)p(az) . .. p(ay.), where

p(u) denotes the number of partitions of .

Example 3.3.5. Let GG be an abelian group of order p”, where p is a prime number.
n=1 G =12,

n=2 G = Z, X Ly, or ZLy;

n=3 G = Zy X Ly X Ly, L2 X Ly, OF Ly

n=4 G = Zp X Ly X Ly X Lipy, L2 X L2, L2 X Loy X Ly, Liys X Ly OT Lys

Example 3.3.6. Let G be an abelian group of order 100 = 2252,

G = G X G, where G is 2-Sylow subgroup of G and G5 is a 5-Sylow subgroups
of G

Gl :Zg XZQ or Z47
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G2 = Z5 X Zg, or Z25;

G:ZQXZ2><Z5XZ5,ZQXZQXZQ5,Z4XZ5XZ5OYZ4XZQ5.

Theorem 3.3.7. Let G be a group and A and B be subgroups of G. If
(i) G = AB

(7i) ab = ba for alla € A, b € B, and

(iii) AN B = {e},

prove that G is an internal direct product of A and B.

Proof. let us first show that A and B are normal subgroup of G. For this, let a € A,
g € G. There exist ¢ € A and b € B such that g = ¢b by(i). Now gag™ = (cb)a(cb)™?
= cbab~tc™! = cabb~'c™! = cac™! € A. Hence, A is a normal subgroup of GG. Similarly,
B is a normal subgroup of G.Let ¢ € G. Then g = ab for some a € A, b € B.
Suppose g = aib;, where a; € A, by € B. Then ab = a;b;, which implies that
a;'a =bb' € AN B = {e}. Thus a = a; and b = b;. Therefore, we find that every
element g of G' can be expressed uniquely as g = ab, a € A, b € B. Consequently, G is

an internal direct product of A, B. a

Theorem 3.3.8. Let A and B be two cyclic groups of order m and n, respectively.

Show that A x B is a cyclic group if and only if ged(m,n) = 1.

Proof. Let A = (a) for some a € A and B = (b) for some b € B. Suppose
ged(m,n) = 1. Let g = (a,b). Then ¢™" = (a,b)™ = (a™",b"™") = (ea,ep), where e
denotes the identity of A and ep denotes the identity of B. Suppose o(g) = t. Then
(a,b)t = (ea,ep). This implies that ' = e4 and b* = eg. Thus, m|t and n|t. Since
ged(m,n) = 1, mn|t. Hence, mn is the smallest positive integer such that ¢"" = e.
Thus, o(g) = mn. Now |A x B| = mn and A x B contains an element ¢ of order

mn. As a result, A x B is cyclic. Conversely, assume that A x B is a cyclic and
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ged(m,n) =d # 1. Let (a,b) € Ax B. Then o(a)|m and o(b)|n. Now ™ = Bn =m

a3

is and integer and "7 < mn. Also,

Hence, A x B does not contain any element of order mn. This implies that A x B is

not cyclic, a contradiction. Therefore, ged(m,n) = 1. O
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Chapter 4

Unit 3: Canonical Form

4.1 Basics of Linear Transformation

Definition 4.1.1. A nonempty set V' is said to be vector space over field F' if
i) (V,+) is a abelin group.

i) a- (v +ve) =a-v+a-ve

iv) a(8-v) = (aB) -v

(
(
(iii) (a+ f) - v=a-v+[-v
(
(v) lv=wvforallv eV,

Example 4.1.2. 1. Every field is a vector space over itself
2. Every field is a vector space over its subfield
3. If F is a field, then F[x] is a vector space over F’
4. If F is a fiel, then M,,.,,(F) is a vector space over a field F’
5. C0,1] is a vector space over R

6. Let V,, = {f(x) € Flz] : deg(f(x)) < n}. Then V, is vector space over a field F'.
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Definition 4.1.3. Let V' be vector space over F. A subset B of V is a basis for V'

over F'if B span V and B is linearly independent.

Example 4.1.4. 1. If F'is a vector space over itself, then {1} is a basis for F' over

F
2. If F[z] is a vector space over F, then {1,z,2% ...} is a basis for F[z] over F

3. If M,wm(F) is a vector space over a field F', then

B ={E;; : ij" entry is 1 other entries are 0} is a basis for M, ., (F).

4. Let V,, = {f(z) € Flz] : deg(f(z)) < n} be a vector space over F'. Then

{1,z,2% 23,...,2"} is a basis for V}, over F.

Definition 4.1.5. Let V' and W be vector space over the same field F. A function

T:V — W is a linear transformtion if

T(au+v) =aT(u) +T(v)

for all « € F and u,v € V.

Example 4.1.6. Define O : V. — W by O(v) = 0, for all v € V. Then O(au + v) =

0p = aO(u) + O(v) and so O is Zero transformation

Example 4.1.7. Define D : Flz] — F[z| by D(f(x)) = f'(x) for all f(z) € Flx].

Then D(af(z) +g(x)) = (af(x) +9(z))" = af'(z) + ¢'(x) = aD(f(z)) + D(g(x)) and

so D is linear transformation.

Definition 4.1.8. Let T € A(V'). A subspace W of V' is invariant under 7" if T'(W') C

W. Clearly (0) and V' are invariant subspace under 7'
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Example 4.1.9. Let T' € A(V). Then T'(V) is invariant subspace of V under 7" and
Ker(T) is subspace of V under 7.

Definition 4.1.10. Let F' be a field and p(x) € Flz]. Then p(z) is the minimal
polynomial for 7" € A(V) if p(z) is monic, p(T") = 0 and g(T") # 0 for all g(z) € F|x].

Example 4.1.11. Let I : V — V by I(v) = v for all v € V. Then the minimal

polynomial for [ is (x — 1)™.

Example 4.1.12. Let O : V. — W by O(v) = Oy for all v € V. Then the minimal

polynomial for O is x.

Example 4.1.13. Define D : V,, — V,, by D(f(x)) = f'(z) for all f(z) € F[z]. Then

the minimal polynomial for D is 2"+,

Definition 4.1.14. A linear operator 7" on V is called nilpotent if 7" = 0 for some

positive integer n.

Example 4.1.15. Let O : V. — W by O(v) = Oy for all v € V. Then O is nilpotent

transformation.

Example 4.1.16. Define 7' : R*> — R? by T(z,y) = (0,z). Then T?*(z,y) =
T(T(x,y)) =T(0,z) =T(0,0) = (0,0) and hence T is nilpotent transformtion.
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4.2 Triangular Form

Definition 4.2.1. The linear transformations S,7 € A(V) are said to be similar if

there exists an invertible element C' € A(V) such that T'= CSC~.
Definition 4.2.2. The subspace W of V' is invariant under 7' € A(V) if WT' C W.

Lemma 4.2.3. If W C V is invariant under T', then T induces a linear transformation
T on a vector space V /W, defined by (v+W)T = vT+W. If T satisfies the polynomial
q(r) € Flx], then so does T. If p\(x) is the minimal polynomial for T over F and if
p(x) is that for T, then pi(z)|p(x).

Proof. Let V=V|W ={u+W:ueV}. Givenv=v+W €V define T : V/W —
V/W by oT = vT +W. Then (a(v) + @)T = (aw +u)T + W = a(vT) +uT + W =
a(T +W) +uT + W = avT + 4T and hence T is a linear operator on V/W.

Suppose that v = v + W = vy + W where vy,v5 € V. We must show that
nT +W =vT +W. Since v;1 + W = vy + W, v1 — v must be in W, and since W is
invariant under 7', (v; — v2)T must also be in W. Consequently v;7 — v, T € W, from
which it follows that v,7 + W = v,T + W, as desired. We now know that T defines a
linear transformation on V = V|W.

Ifo =ov+W €V, then 9(T?) = vT?> + W = (WI)T +w = (T + W)T =
(v + W)T)T = o(T)? ; thus ()T2) = (T)? Similarly, (T*) = (T)* for any k > 0.

Consequently, for any polynomial ¢(z) € Flz], ¢(T") = ¢(T'). For any ¢(z) € F|x] with
¢(T) = 0, since 0 is the zero transformation on V, 0 = ¢(T") = ¢(T).

Let pi(z) be the minimal polynomial over F' satisfied by T. If ¢(T) = 0 for ¢(z) €
Flx], then Pi(x)Iq(z). If p(z) is the minimal polynomial for 7" over F', then p(T") = 0,

whence p(T") = 0; in consequence, p;(z)|p(z). O

Note that all the characteristic roots of T which lie in F are roots of the minimal

polynomial of T" over F'. We say that all the characteristic roots of T" are in F' if all
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the roots of the minimal polynomial of T" over F' lie in F.

We defined a matrix as being triangular if all its entries above the main diagonal
were 0. Equivalently, if T" is a linear transformation on V over F', the matrix of T in

the basis v, ..., v, is triangular if

UlT = 01101

UQT = (10 + Q2 9V2

U T = Q11 + -+ - Qg U

Theorem 4.2.4. IfT € A(V) has all its characteristic roots in I, then there is a basis

of V' in which the matrix of T is triangular

Proof. The proof by induction on the dimension of V over F. If dimp(V) = 1, then
every element in A(V) is a scalar, and so the theorem is true here. Suppose that
the theorem is true for all vector spaces over F' of dimension n — 1, and let V' be of
dimension n over F.

Note that the linear transformation 7" on V has all its characteristic roots in F.
Let \; € F be a characteristic root of T'. Then there exists a nonzero vector vy in V
such that 17 = A\jvy. Let W = {av; : @ € F}; W is a one-dimensional subspace of
V, and is invariant under 7. Let V = V/W. Then dimV = dimV — dimW = n — 1.
By Lemma 4.2.3, T induces a linear transformation 7' on V whose minimal polynomial
over F' divides the minimal polynomial of T over F'. Thus all the roots of the minimal
polynomial of 7', being roots of the minimal polynomial of T, must lie in F. Hence
the linear transformation 7 in its action on V satisfies the hypothesis of the theorem:;
since V is (n — 1)-dimensional over F', by our induction hypothesis, there is a basis
Vs, s, ..., 0, of V over F such that 9,7 = Q101

'UQT = 052711_)1 + 062,2’172
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/l_}nT = O‘n,lfl_}l +-+ Oém,nq_}n

Let v, ..., v, be elements of V mapping into v, @3, . . ., U, of V respectively. Then
v1,...,v, form a basis of V. Since 9,7 = Qi 2U2, oo = ag9Uy = 0, whence voT" —
a9vy must be in W. Thus voT" — 209 is a multiple of vy, say as vy, yielding, after
transposing, vo1" = i 1v1 + Qg 2Vs.

Similarly, v;T" — a; 202 — ;303 — - -+ — a;;v; € W, whence v;T = ;101 + ;202 +
a;3v3 + -+ + oy ,v;. The basis vy,...,v, of V over F' provides us with a basis where
every v; 1" is a linear combination of v; and its predecessors in the basis. Therefore, the

matrix of 7" in this basis is triangular. a

Theorem 4.2.5. If V is n-dimensional over F and if T € A(V') has all its character-

istic roots in F', then T satisfies a polynomial of degree n over F.

Proof. By Theorem 4.2.4, we can find a basis vy,...,v, of V over F such that:

T = Mvy, T = agvr + Avg, ..., 4T = a1 + - + g i-10i-1 + A, for
i =1,2,...,n. Equivalently v1(T — A1) = 0, vo(T — \2) = agqvy, ..., vi(T — At) =
Q11 + 4 y—1Vi—1, for i = 1, 2, oo, n.

As aresult of vo(T'—Xg) = agqv; and v1(T'— A1) = 0, we obtain vo(T'— o) (T — A1) =
0. Since (T — )\2)(T — )\1) = (T — )\1)(T — )\2),

V(T = D) (T = A\) = 01(T — M) (T — \s) = 0.

Continuing this type of computation yields
'UI(T — )\z)<T — )\1?1) R (T - )\1) = 0,
’UQ(T — )‘z)(T - )\i—l) .. (T - /\1) = 0,

0T = XN (T = Niet) .. (T — M) = 0.

For i = n, the matrix S = (T —\,) (T — A1) - - - (T'— A\y) satisfies v;S =vg = -+ - =

v, = 0. Then, since S annihilates a basis of V', S must annihilate all of V. Therefore,
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S = 0. Consequently, T" satisfies the polynomial (z — A\)(x — A2)...(x — A,) in F[x]

of degree n. a

4.3 Nilpotent Transformations

Definition 4.3.1. Let V' be a vector space over F' and T' € A(V). If T™ = 0 for some

m, then T is nilpotent linear transformation on V.

The smallest positive integer k such that 7% = 0 is called nilpotent index of 7T

If T is nilpotent operator with nilpotent index k, then T # 0 for all s < k.

Lemma 4.3.2. All characteristic roots of the nilpotent linear transformation are zero.

Proof. Let T be anilpotent lineartransformation of nilpotent index m. Then T™ = 0.
Let « be a characteristic root of T. Then there exist u # 0 in B such that vT = au.

4

2u. From this, we get uT’ = of. Since

Since vT' = au, uT? = a(ul) = aau = «

T =0, uT™ = a™u = 0. Since u # 0, @™ = 0 and hence a = 0. O

Lemma 4.3.3. If V =V, @& Vo & --- ® V}, where each subspace V; is of dimension n;
and is invariant under T, an element of A(V'), then a basis of V' can be found so that

the matrix of T in this basis is of the form

A 0 ... 0
0 Ay ... 0
0 0 ... A

where each A; is an n; X n; matriz and is the matriz of the linear transformation

mduced by T on V.
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Proof. Choose a basis of V' as follows: vg), e ,v,(f) is a basis of V} ,12%2), e ,vﬁf)

is a basis of V5, and so on. Since each V; is invariant under T, vj(-i)T € V,s0is a
linear combination of vf), vg), e ,vff), and of only these. Thus the matrix of T in the
basis so chosen is of the desired form. That each A; is the matrix of T;, the linear

transformation induced on V; by T, is clear from the very definition of the matrix of a

linear transformation. O

Definition 4.3.4. If T' € A(V) is nilpotent, then k is called the index of nilpotence of
T if T* =0 but T+~1 #£ 0.

In a ring, sum of unit element and nilpotent element is unit.

Lemma 4.3.5. If T' € A(V) is nilpotent, then ag + T + -+ + o, T™ is invertible,
where a; € F, if ag # 0.

Proof. Since T is nilpotent, 7" = 0 for some r. Let S = anT+ = cuT? + -+ -+ o, T™.
Then S is the linear combination of 77, ..., 7™ . Since T" = 0, S™ = 0. Since A(V)

is ring and g # 0, agl is unit and so agl + S = ag + S is unit. a

Notation: M; will denote the t x t matrix all of whose entries are 0 except on the

superdiagonal, where they are all 1's.

-0 1 0 0 0 ()-

0 010 0 0
M, =

00 0O 01

0 00 0 . 0 0

Theorem 4.3.6. If T € A(V) is nilpotent, of index of nilpotence ny, then a basis of

V' can be found such that the matriz of T' in this basis has the form
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M, 0 0
0 M, 0
0 0 M,
where ny > ng > -+ > n,, and where ny + no + -+ - +n, = dimpV.

Proof. The proof will be a little detailed, so as we proceed we shall separate parts of
it out as lemmas. Since 7™ = 0 but 7™~ #£ 0.
Claim 1: We can find a vector v € V such that vT™ ! # 0. We claim that the vectors
v, 0T, ..., vT™ ! are linearly independent over F.

For, suppose that ;v + apvT + - - - + ay,, vT™ ! = 0 where the a; € F; let ay be

the first nonzero «a, hence

vT¥ o + as T+ -+, T %) =0

Since oy # 0, by Lemma 4.3.5, ag+as 1T+ - -+, T ~° is invertible, and therefore
vT*™1 = 0. However, s < ny, thus this contradicts that v7™~! = 0. Thus no such
nonzero o, exists and v,vT,...,vT™ ! have been shown to be linearly independent
over F'.

Let V; be the subspace of V spanned by v, = v,vy = vT,...,v,, = vT™ % Vi is
invariant under 7', and, in the basis above, the linear transformation induced by 7" on
Vi has as matrix M,

Claim 2: If u € V; is such that 7™ % = 0, where 0 < k < nq, then v = uoT* for
some ug € Vj.

Since u € Vi, v = v + T + -+ + T 4+ apvTF + -+ + amanl_l )
Thus 0 = vT™ % = avT™ '+ 4 apuT™ 1. However, vT™ % ... vT™~! are linearly
independent over F, whence a; = ay = --- = a3 = 0, and so, u = o 0TF + -+ +

Q0T = ugT* where U, = ajqv + -+ - + apvT™ k1 € V.
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Claim 3: There exists a subspace W of V| invariant under 7', such that V =V, @ W.

Let W be a subspace of V| of largest possible dimension, such that
1. VinW = (0);
2. W is invariant under T'

We want to show that V' = Vi +W. Suppose not; then there exists an element z € V
such that z ¢ V) + W. Since T™ = 0, there exists an integer k, 0 < k < ny, such that
2T*% € Vi +W and such that 27% ¢ V; + W for i < k. Thus 27% = u+w, where u € V,
and where w € W. But then 0 = 2T™ = (2T%)T™ % = T % + wT™*; however,
since both V; and W are invariant under 7', uT™ % € V; and wT™ % € W. Now, since
ViNnW = (0), this leads to uT™ % = —wT™~* € V,NW = (0), resulting in «T™ % = 0.
By Claim 2, v = uT* for some vy € Vi; therefore, 2T% = u + w = ueT* + w. Let
2 = z—up ; then 2;TF = 2T*F —ugT* = w € W, and since W is invariant under 7" this
yields ;7™ € W for all m > k. On the other hand, ifi < k, 2,7 = 2T°~U,T* > v, +w,
for otherwise 2T must fall in V; + W, contradicting the choice of k.

Let W, be the subspace of V spanned by W and Z;, Z,T, ..., Z,T% . Since z; ¢ W,
and since W; D W, the dimension of W; must be larger than that of W. Moreover,
since z;T* € W and since W is invariant under 7', W, must be invariant under 7. By
the maximal nature of W, there must be an element of the form w0 + a1 Z7 + oz T +
et apz TR £ 0 in Wy NV, where w, € W. Not all of ag, . . ., o, can be 0; otherwise
we would have 0 # w, € WUV, = (0) a contradiction.

Let oy be the first nonzero «; then wy + 275 Yo + ag 1T + - + o TH%) € V.
Since a; # 0, by Lemma 4.2.4 , oy + g T + - - - + o, TF~* is invertible and its inverse,
R, is a polynomial in 7. Thus W and V; are invariant under R; however, from the
above, w,R+ 217" € ViR C V;, forcing 2:T* ' € Vi+WR C Vi, +W. Since s—1 < k
this is impossible; therefore V; + W = V. Because Vi NW = (0),V =V, W.

By Claim 3, V = V; + W, where W is invairant under R. Using the basis vy, ..., vy,

of V} and any basis ov W as a basis of V. By Lemma 4.2.3, the matrix of 7" in this

63



basis haas the form
M, 0

Y

0 A

where A, is the matrix of T3, the linear transformation induced on W by T.
Since T™ = 0, T5"* = 0 for some ny < ny. Repeating the argument used for 7" on V
for T, on W we can decompose W. Continuing this way, we get a basis of V' in which

the matrix of T is of the form

M, 0 0
0 M, 0
0 0 M,
From this, we get ny +no + -+ +n, = dimgV. O
Definition 4.3.7. The integers nq,no,...,n, are called the invariants of 7.

Definition 4.3.8. If T' € A(V) is nilpotent, the subspace M of V', of dimension m,

which is invariant under T, is called cyclic with respect to T if
1. MT™ = (0), MT™ ! £ (0);

2. there is an element 2 € M such that z, 27, ..., 2T™ ! form a basis of M

Lemma 4.3.9. If M, of dimension m, is cyclic with respect to T, then the dimension

of MT* is m — k for all k < m.

Proof. A basis of MT* is provided us by taking the image of any basis of M under
T*. Using the basis z, 2T, ..., 2T™ ' of M leads to a basis 2T zT*!, ... 2T™ ! of

MT*. Since this basis has m — k elements, the dimension of MT* is m — k. O
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Lemma 4.3.10. [f T is nilpotent operator on V', then the invaiant of T are unique.

Proof. Let if possible there are two sets of invariants ny, na, ..., n, and mq, ma, ..., my

of T. ThenV =Vi®---®V,and V = U, B --dU,, where V; and U; are cyclic subspace

of V' of dimension n; and m;, respectively. Now we show that r = s and n; = m;,.
Suppose that k be the first integer such that n, # my. Then n, = m; for ¢ < k.

Without loss of generality, ny > my. Consider
ka(v> — ka(vl) BB ka(vr)
and
dim 7" (V) =dimT™ (V1) & --- @ dim T™*(V}.)

By the above Lemma, dim 7™ (V;) = n; — my,. Therefore dim T™* (V') > (n; — my) +
st (ng_g — ng).
Simillarly,
dim T™ (V) = dim T™ (U3) @ - - - @ dim 7™ (U,).

As m; < my, for j > k, we have T (U;) = {0}. Therefore, dim 7™ (U;) = 0 for
J > k. Hence,

dimT™ (V) = (mq — my) + -+ - + (my—1 — ny)

. By assumption,
dim ka(V) = (n1 — mk) + -+ (nk_l — nk)

T S
, a contradiction. Hence n; = m,. Since dimV = > n; = > m;, r = s. O
i=1 =1

Theorem 4.3.11. Two nilpotent linear transformations are similar if and only if they

have the same tnvariants.
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Proof. Suppose S and T are similar. Then there exist a regular mapping A such that
ATITA=S.

Let ny,ns,...,n, be invariants of S and my, ms, ..., ms be invariants of 7. Then
V=Vieo---oV,and V =U; ®--- ® U, where V; and U; are cyclic and invariant
subspaces of V' of dimension n; and m;, respectively.

As S(V;) Cc V;, (AT'TA)(V;) C V; implies (A™'T)A(V;) C Vi. Put A(V;) = U;,
(since A is regular). Thus, dimV; = dim U; = n,;. Further T(U;) = TA(V;) = AS(V;).
As S(V;) C V;, therefore T'(U;) C U;. Equivalently, we have to show that U; is invariant
under 7.

Moreover,

V=AV)=AW) & - AV,)=U1& - & U..

By the above theorem, the invariants of nilpotent transformations are unique. There-

fore n; = m; and r = s. Conversely, suppose that two nilpotent transformations

S and T have same invariants. Then there exists two bases say, {vi, va,...,v,} and
{uy, us, ,u,} of V such that the matrix of S under {vy,vs, ..., v,} is equal to the matrix
of T under {uy,us, ..., u,}.
Let it be
M,, 0
m(S) =m(T) =
0 M,

where m(S) = [a;;] and m(T") = [b;;]
Define a linear transformation A : V' — V by A(v;) = u;. Then A7'TA(v;) =
A_1T<U — Z) = A_l(z a,»juj) = Z CLZ'jA_l(Uj) = Z QU5 = S(Uz) Hence A_lTA =5
j=1 j=1 j=1

and so S and T are similar. O
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Chapter 5

Unit 4: Canonical Forms: Jordan

Form

Let V' be a finite-dimensional vector space over F' and let T' be an arbitrary element
in Ap(V). Suppose that V; is a subspace of V' invariant under T'. Therefore T" induces

a linear transformation 77 on Vj defined by u1} = uT for every u € Vj. Given any

polynomial ¢(z) € Fl[z], we claim that the linear transformation induced by ¢(T") on
V1 is precisely ¢(71). In particular, if ¢(7") = 0 then ¢(7}) = 0. Thus 77 satisfies any

polynomial satisfied by T" over F. What can be said in the opposite direction?

Lemma 5.0.12. Suppose that V = Vi®V, where V and Vy are subspaces of V' invariant
under T. Let Ty and Ty are the linear transformations induced by T on Vi and Vs
respectively. If the minimal polynomial of Ty over F is pi(x) while that of Ty is pa(z),

then the minimal polynomial for T over F' is the l.c.m{pi(x), p2(z)}.

Proof. Let q(z) be the l.c.om{pi(z),p2(x)} and let p(x) be the minimal polynomial
of T.
Since p(z) is the minimal polynomial of 7. Then p(T) = 0 = p(71) = 0 and

p(Ty) = 0. Since p;(x) and py(x) are the minimal polynomial of T} and T respectively,
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p1(z)|p(x) and po(z)|p(x). From this we get p(x) is one among all the multiples of
pi(z) and py(x) and s0 ¢(2)p().

On the other hand, if ¢(x) is the least common multiple of p;(z) and ps(x), consider
q(T). For v; € Wy, since py(x)|q(z), v1q(T) = viq(T1) = 0; similarly, for vy, € V5,
veq(T) = 0. Given any v € V, v can be written as v = v; 4+ vy, where v; € V;, in
consequence of which vq(T) = (vl + v2)q(T) = v1g(T) 4+ v2¢(T) = 0. Thus ¢(T) = 0

and T satisfies ¢(x). Since p(x) is minimal polynomial for 7', p(z)|q(x). O

Corollary 5.0.13. If V = V| @& --- ® Vi, where each V; is invariant under T and if
pi(x) is the minimal polynomial over F of T; the linear transformation induced by T

on V;, then the minimal polynomial over F is the l.c.om{pi(x), ..., pe(z)}.

Lemma 5.0.14. Any polynomial in F[x] can be written in a unique manner as a

product of irreducible polynomials in F[z].

Lemma 5.0.15. Given two polynomials f(x),g(x) € Flz|, they have g.c.d d(x) which
can be realized as d(z) = Nz) f(z) + p(z)g(x).

Lemma 5.0.16 (Integers). If a and b are integers, not both O then we can find integers

mo and ng such that (a,b) = moa + ngb.

Theorem 5.0.17. Prove that for eachi=1,....k,V; Z0 andV =V, &--- D V. The

minimal polynomial of T; is (g:(x))%, where g; is irreducible and I; is an integer.

Proof. LetT € Ap(V) and p(z) be the minimal polynomial over F. By Lemma 5.0.14,
p(z) € F[z] is factorized in a unique way i.e, p(z) = q1(7)"q ()2 ... qp(z)* where ¢
are distinct irreducible polynomial in F[z] where [y, ...} are positive integers.

Let V; = {v eV :vg(T)% =0} fori =1,2,..., k. Then each V; is a subspace of V.
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Claim 1: V; is invariant under T’

Let u € V;. Tt is enough to prove (uT)(¢:(T))% = 0. Now (uT)(q(T))% =
(ug;(T)4)T = 0T = 0 and so uT € V;. Hence each V; is invariant under 7.

If kK =1, there is nothing to prove, assume that £ > 1.

Claim 2: V; # (0)

Let hi(z) = ﬁ for i = 1,2,...,k. Then clearly ¢(x)"h;(z) = p(x), for i =
1,2,...,k. Moreover h;(x) # p(z) and h;(T) # 0. Then for any given i, there is a
w € V such that w = vhy(T) # 0. But wg;(T), = v[hi(T)q:(T)}] = vp(T) = 0 and so
w € V;. Therefore, V; # (0). Moreover Vh;(T) # 0 and Vh;(T) C V.

Claim 3: V=V + Vo +---+ 1V}

Suppose v; € V; for j # i.. Then g;(z)'|h;i(z) = hi(z) = ¢;(x)" f(x) for some

f(z). Now v;hi(T) = [vjq;(T)4]f(T) = 0 for all j # i. Clearly, the polynomial
hi(z), ha(z) ..., hi(x) are relatively prime. By Lemma 5.0.15, we can find polyno-

mials a1(x),...,ax(x) in Flz] such that ai(z)hi(z) + -+ + ax(x)hi(z) = 1 implies
ar(T)h(T) + - +ak(T)hk(T) = 1. Forany v € V, v = vl = v[ay(T)(T) + -+ +

ap(T)hi(T)] = vay (T)hy (T) + - - - + vag(T)h(T). Now, each va;(T)h;(T) is in Vh;(T),

implies V'h;(T) C V;. From this, we get v = vy + - - - 4+ vg, where v; = va;(T)h;(T) and

hence V=V, + Vo +---+V,

Claim 4: If uy +--- 4+ u, =0, then uy = uy = - - - = uy, = 0 where each u; € V;

Suppose not for some 7, u; # 0. Without loss of generality, we may assume that u; #
0. Since uy +ug+- - - +up = 0, uyh (T) +ushy (T) +- - -+ (T) = 0 = u;h (T) =0
for all j # 1. Since u)j € V;, ughy(T) = 0. This implies that uiq;(T)" = 0. Since
hi(z) and q;(z)" are relatively prime, u; = uil = uy[by(T)hi(T) + bo(T)qi (T)"] =
urhy (T)oy(T) + u1 1 (T)1b5(T) = 0, a contradiction.

Claim 5: Minimal polynomial of T; on V; is ¢(z)!

By the definition of V;, Vig;(T)% = 0 = ¢(T)% = 0. This implies the minimal

polynomial for T; must be a divisor of ¢;(z)% and so the minimal polynomial of T is

¢i(z)/i where f; < ;. By Lemma 5.0.12, the minimal polynomial of T is the l.c.m
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{q (), qu(x)} = qi(x)f - - gu(x)*. Since this is the minimal polynomial each
fi 2z b, fi= 1. .

If all the characteristic roots of T' should happen to lie in F, then the minimal
polynomial of T" takes on the especially nice form q(x) = (z —A)% - -+ (z — \)%, where
A1, ..., A are the distinct characteristic roots of T'. The irreducible factors ¢(z) above

are merely ¢;(z) = x — \;, Note that on Vj, T; only has \; as a characteristic root.

Corollary 5.0.18. If all the distinct characteristic roots Ay, Aa, ..., \p of T lie in F
then V' can be written as V =V, ® Vo ®V, where V; = {v; € V : V(T — \;)k = 0}

and T; has only one characteristic root \; € V;

Definition 5.0.19. The matrix

A1 0 . 0
0 X1 0
0 0 A 0
000 ... 1
00 0 ... A

where \;’s are on diagonal, 1’s on the super diagnal and 0’s elsewhere is a Jordan block
belonging to A.

Jordan form: The matrix

Ji\
JaAo

JE Nk

where
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Bin
where B, Bis, - -+, B;,, are basic Jordan blocks belonging to A;.
Let A € F, and suppose that K is the splitting field of the minimal polynomial

of A over F, then an invertible matrix C' € K,, can be formed so that CAC™! is in

Jordan form.

Remark 5.0.20. Two linear transformation Ap(V') which have all their characteristic

roots in F' are similar iff can be bought to the same Jordan form.

Theorem 5.0.21. Let T € Ay(V) have all its distinct characteristic Toots Ay, Ag, -+, Ak

i F. Then a basis of V' can be found in which the matriz of T' is of the form

J 0 - o 0

0 Jy o+ - 0

0 - Jy

where each
Bi
= Bis

Bir
where By, -+, By are basic Jordan block belongs to ;.

Proof. Consider the case that 7" has only one characteristic root A. Then by above
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corollary, V = {v € V : T(T — \)! = 0}. T — X is nilpotent. Now T'= A +T — ). Since

T — ) is nilpotent, there is a basis in which its matrix is of the form

Mnl
Mn2
M’I’LT
Then the matrix of
)\ Mnl Bnl
T = + =
A Mnr Bnr
Hence the theorem is proved. O

5.1 Rational Canonical form

To obtain the Jordan form of 7' € A(V'), T must have its characteristic roots in F. In

rational canonical form the location of characteristic roots is not assumed.

Given f(x) = apa™ + ap_ 12" '+ -+ a1x +ag € Flz] and v € V, f(x)v € f(T)v,

then v is called an F'[x] module through T.

Remark 5.1.1. 1. If V is finite dimensional vector space then V' becomes a finitely
generated F|x] module.
2. By remark 1 and by Fundamental theorem of finitely generated modules V- = V; @

Vo @ -+ @ Vi, where each V; is cyclic submodules, F[z] is Fuclidean ring

Definition 5.1.2. V is said to be cyclic relative to T" if for every w € V there exist
veV,w=uvf(T).
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Lemma 5.1.3. Suppose that T in Ap(V), has the minimal polynomial over F, the
polynomial p(x) = v + Y12 + -+ + V12"t + 2", Suppose V is cyclic relative to T,

then there is basis of V' over F' such that, in this basis, the matrix of T s

0 1 00 0
0 0 10 0
0 0 00 - 1
~— -7 - T

Proof. Since V is cyclic relative to T, there exists a vector v in V' such that every
element w, in V, is of the form w = v f(T) for some f(z) in F|x].
Claim 1.
If vs(T') = 0, for some polynomial s(x) in F[z], then s(7') = 0. From this, vs(T) = 0
implies for any w € V such that wS(T) = vf(T)s(T) = vs(T)f(T) = 0. Therefore
S(T') = 0. Hence the claim 1.

Claim 2
Note that {v,vT, VT?,--- VT"1} is a basis of V. Since p(z) is a minimal polynomial
of T, p(x)|s(x). First we have to prove v,vT, VT?,--- VT ! are linearly independent.
Suppose not, agv + a1vT + axvT? + -+ - a,_1vT"~! = 0 implies not /s are zero. This
implies v(ag + T + aoT? + -+, ,T77') = 0 and so vg(T) = 0, where g(T) =
ap+ a1 T+ apT?+ -, T"71. Thus ¢g(T) = 0 (By claim 1) implies T satisfies g(z).
Hence p(x)|g(x) implies p(z)|ao + 1@ + ax® + -+ a,_2" 1. This is possible only if
apg =1 = - ap_1 = 0.
Next we will prove the vectors v,vT, VT?,--- , VI" ! span V. So vT" = vyqv — yvT —

e — 0T and
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0 1 00 0
0 0 10 0
m(T) =
0 0 00 1
Y -7 - - Tl

Definition 5.1.4. If f(z) = v, +nx+- - +7 12" ' +2" € F[z] then the r x r matriz

0 1 00 0
0 0 10 0
0 0 00 1
% M- - Ve

is called the companion matriz of f(x). We write it as C(f(x)).

Example 5.1.5. Let f(z) = 2® 4+ 32> + 4o — 7. Then

0 1 0
0 0 1
7T —4 =3

Theorem 5.1.6. If T'in Ap(V') has as minimal polynomial p(x) = q(x)¢, where q(z) is

a monic, irreducible polynomial in Fx], then a basis of V over F can found in which
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the matriz of T is of the form

Cla(x))
Clq(x)=)

where e = e; > €9 > €9 > -+ > €.

Proof. Since V is finitely generated F[z]- module V = V) & Vo & --- & Vj, where

Vi={veV:vev(qT)) =0} Since T" = —yg — T — - — 5T T k>0
is a linear combination of 1,7, T2, --- 771, This implies f(T) is a linear combination
of 1,T,T% --- , T"!. over F. Since any w in V is of the form w = vf(T), w is a linear

combination of v,vT,vT?, --- vT" ' Let V; = v, Vo = vT, V5 = vT?%---V, = vT" 1,
Thus we have to prove ViT = VT =V, =0V, + 1V +--- + 0V, and so VoT = VT? =
Va3 =0Vi +0Vo 4+ 1V5+---+ 0V,.. Note that each V; is cyclic sub-module. Also each V;
is invariant under 7" and hence induces a linear transformation 7} on V.

Since the minimal polynomial of 7; divides the minimal polynomial of T = ¢(x)°,

€i

the minimal polynomial of T; is of the form ¢(z)%, where ¢; < e........ (1) By suitably
rearranging V's we have e; > ey > -+ > ¢;.
Since V; is a cyclic submodule relative to T;, there is a basis of V; in which m(7;) =

c(q(x)),. From this, we get

Finally we have to prove e = e;. For v; € V; implies v;[q(T)]* =0 for i =1,--- ,r.

This implies v[q(T")]** = 0 implies [¢(7")]** = 0. But ¢(x)¢ is the minimal polynomial of
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(1) and (2), hence e = e;.
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Chapter 6

Unit 5

6.1 Trace and Transpose

Definition 6.1.1. Let F}, be the set of all n x n matrices over a field F. The trace of

A € F, is the sum of the elements on the main diagonal of A.

We shall write the trace of A as trA, if A= (a;;), then

n
trA = Z (077}
1=1

Lemma 6.1.2. For A, B € F,, and A € F,
1. tr(AA) = X tr A.
2. tr(A+ B) =trA+trB.
3. tr(AB) = tr(BA).
Proof. (i) Let A = [a;j], B = [bi;] € F,,. Then AA = [Aa;;] and so tr(AA) = '7121/\% =

=1
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(ii) t?“(A + B) = Z(a“ + b“) = Z ai; + Z b“ = t?“(A) + t?“(B).
i=1 i=1 i=1
If A= (a;;) and B = (§;;) then AB = (v;;) where

n
Yij = E ik B
k=1

and BA = (u;;) where
Hij = Z Bikoukj
k=1

Thus

tr(AB) = Z%Z = Z (Z Oéikﬂki) ;

i

if we interchange the order of summation in this last sum, we get

tr(AB) = Z Zaikﬁm‘ = Z (Z ﬁm‘az‘k) = Zﬂkkz = tr(BA).

k=1 =1 k=1 \i=1 k=1
O

Corollary 6.1.3. If A is invertible then tr(ACA™Y) = tr(C).
Proof. Let B = CA™'. Then tr(ACA™) = tr(AB) = tr(BA) = tr(CA™'A) =
tr(C). O

Definition 6.1.4. If '€ A(V) then tr T, the trace of T, is the trace of m,(T") where

m1(7T) is the matrix of 7" in some basis of V. We claim that the definition is meaningful

and depends only on 7" and not on any particular basis of V. For if m,(7T) and my(T)
are the matrices of T" in two different bases of V', then m4(T") and my(T") are similar

matrices, so they have the same trace.

Lemma 6.1.5. If T € A(V) then tr(T) is the sum of the characteristic roots of T
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Proof. We can assume that 7" is a matrix in F,. If K is the splitting field for the
minimal polynomial of T" over F', then in K,,, T can be brought to its Jordan form, J.
From this, J is a matrix on whose diagonal appear the characteristic roots of T, each
root appearing as often as its multiplicity. Thus ¢r(J) is the sum of the characteristic

roots of T'. However, since J is of the form AT A~ tr(J) = tr(T). O

Lemma 6.1.6. If F' is a field of characteristic 0, and if T € Ap(V) is such that
tr(T%) = 0 for all i > 1 then T is nilpotent.

Proof. Since T € Ap(V), T satisfies some minimal polynomial p(z) = 2™ +a;z™ '+

ooy, from T o T™ 4+ a1 T+ iy, = 0, taking traces of both sides yields

trT™ + cgtrT™ L + oo + a1 trT + tray, =0

However, by assumption, tr(7%) = 0 for ¢ > 1, thus we get o, = 0. If dimV = n,
tr(am,l) = na,, whence na,, = 0. But the characteristic of F' is 0, therefore, n # 0,
hence it follows that a,, = 0. Since the constant term of the minimal polynomial of T’
is 0, T is singular and so 0 is a characteristic root of T

We can consider T" as a matrix in F,, and therefore also as a matrix in K,, where
K is an extension of F' which in turn contains all the characteristic roots of T'. In K,,,
we can bring T to triangular form, and since 0 is a characteristic root of T, we can

actually bring it to the form.

010 0
Ba g 0. 0O B 00

= . . :
B | * ,

79



where,

isan (n—1) x (n — 1) matrix (the x’s indicate parts in which we are not interested

in the explicit entries). Now

0] 0

“ | Tk
hence 0 = tr(T*) = tr(Ty. Thus Ty is an (n — 1) x (n — 1) matrix with the
property that tr(7%) = 0 for all k¥ > 1. Either using induction on n,or repeating the
argument on Ty used for T', we get, since s, ..., are the characteristic roots of 75,
that ay = -+ =, = 0. Thus when T is brought to triangular form, all its entries on

the main diagonal are 0 and hence 7T is nilpotent. a

Lemma 6.1.7. If F' is of characteristic 0 and if S and T, in Ap(V'), are such that
ST — TS commutes with S, then ST — TS is nilpotent.

Proof. Forany k > 1, we compute (ST—TS)*. Now (ST—TS)* = (ST-TS)~(ST—-
TS) = (ST —TS)*1ST — (ST — TS)*'TS. Since ST — T'S commutes with S, the
term (ST — T'S)*~1ST can be written in the form S((ST — TS)*1T). If we let
B = (ST —TS)™'T, we see that (ST — T'S)k = SB — BS; hence tr((ST — TS)*) =
tr(SB—BS) = tr(SB)—tr(BS) = 0. By previous lemma, ST —7T'S must be nilpotent.

O

Definition 6.1.8. If A = [o;;] € F),, then the transpose of A, written as A’, is the

matrix A" = [7;;] where ;; = a; for each i and j.

Lemma 6.1.9. For A, B € F,
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1. (A =A.
2. (A+B) =A"+B.
3. (AB) = B'A".

Proof. Let A = [a;], B = [b;] € F,.

(i) Let A" = [¢;j]. Then ¢;; = aj. In (A') = [d;], dij = ¢ji = a;; and hence
(A" = A.

(ii) Clearly A+ B = [a;; + b;j]. Also (A+ B) = [a;; + b;j|" = [x;;]. From this
T;; = aj; + bj; and so (A+ B) = A"+ B'.

Suppose that A = [a;;] and B = [§;j]. Then AB = [\;;] where

n
Aij = E it Bj -
k=1

Therefore, by definition, (AB)" = [u;;], where

Wij = Nji = Z kB

k=1

On the other hand A" = [v;;] where v;; = aj; and B’ = [§;;] where §;; = (;;, whence
the (i, ) element of B’A’ is

Z@ij = Zﬁkiaﬂc = Z Oéjkﬁm' = Hij

k=1 k=1 k=1
That is, (AB) = B'A’. O
Definition 6.1.10. The matrix A is said to be a symmetric matrix if A’ = A.
Definition 6.1.11. The matriz A is said to be a skew-symmetric matriz if A = —A.

Definition 6.1.12. A mapping * from F,, into F,, is called an adjoint on F, if

1. (A% = A.
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2. (A+ B)* = A"+ B*.
3. (AB)* = B*A*.

forall A, B € F,.

6.2 Hermitian, Unitary and Normal Transforma-

tions

Lemma 6.2.1. If T € A(V) is such that (vI,v) =0 for allv €V, then T = 0.

Proof. Since (vT,v) =0forv eV, given u,w € V, ((u+w)7T,u+w) = 0. Expanding

this out and making use of (7', u) = (wT,w) = 0, we obtain
(uT,w) 4+ (wT',u) =0 for all u,w € V (6.1)

Since equation (6.1) holds for arbitrary w in V| it still must hold if we replace in it
w by iw where > = —1; but (uT,iw) = —i(uT,w) whereas ((iw)T,u) = i(wT,u).

Substituting these values in (6.1) and cancelling out i leads us to
—(uT,w) 4+ (wT',u) = 0. (6.2)

Adding (6.1) and (6.2) we get (wT,u) = 0 for all u,w € V, whence, in particular,
(wT,wT) = 0. By the defining properties of an inner-product space, this forces wT = 0

for all w € V', hence T' = 0. O

Definition 6.2.2. The linear transformation 7' € A(V) is said to be unitary if (uT,vT") =

(u,v) for all u,v € V.

Lemma 6.2.3. If (vT,vT) = (v,v) for allv € V then T is unitary.
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Proof. Let u,v € V. Then by assumption ((u + v)7T,(u + v)T) = (u + v,u + v).

Expanding this out and simplifying, we obtain
(uT,vT) + (vT,uT) = (u,v) + (v, u) (6.3)
for u,v € V. In (6.3) replace v by iv; computing the necessary parts, this yields
—(uT,vT) 4+ (vT,uT) = —(u,v) + (v, u). (6.4)

Adding (6.3) and (6.4) results in (uT,vT) = (u,v) for all u,v € V', hence T is unitary.

O

Theorem 6.2.4. The linear transformation T on V is unitary if and only if it takes

an orthonormal basis of V' into an orthonormal basis of V.

Proof. Suppose that {vq,...,v,} is an orthonormal basis of V. Then (v;,v;) = 0 for
i # j while (v;,v;) = 1. We wish to show that if 7" is unitary, then {v,T,...,v,T} is
also an orthonormal basis of V. But (v;T,v;T) = (v;,v;) = 0 for i # j and (v,T,v;T) =
(vi,v;) = 1, thus indeed {v,T,...,v,T} is an orthonormal basis of V.

On the other hand, if 7" € A(V) is such that both {vy,...,v,} and {v;T,... v, T}

are orthonormal bases of V', if u,w € V then

n n
u = § v, W = E Biv;.
i=1 i=1

whence by the orthonormality of the v;’s,

(uv ’LU) = Z @zﬁz
=1

However,

ul = i o0, 1T and wT = i Giv; T
i=1 i=1
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whence by the orthonormality of the v;T"s,
(UTa wT) = Z aiﬂi = (ua w)
i=1

Hence T' is unitary. O

Lemma 6.2.5. If T € A(V) then given any v € V there exists an element w € V,
depending on v and T, such that (uT,v) = (u,w) for all w € V. This element w is

uniquely determined by v and T.

Proof. To prove the lemma, it is sufficient to exhibit a w € V' which works for all the
elements of a basis of V.

Let {uy,...,u,} be an orthonormal basis of V'; we define

w = i (w;T,v)u;.

=1

An easy computation shows that (u;, w) = (u; T, v), hence the element w has the desired
property. That w is unique can be seen as follows: Suppose that (uT,v) = (u,w;) =
(u,ws); then (u, w; —wsy) = 0 for all uw € V' which forces, on putting u = w; — wy, wy =

wa. O

Definition 6.2.6. If ' € A(V) then the Hermitian adjoint of 7', written as 7™, is
defined by (uT,v) = (u,vT™) for all u,v € V.

Lemma 6.2.7. If T € A(V) then T* € A(V'). Moreover,
1 (T =T;
2 (S+T) =S + T

3. (AS)* = AS*;
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4. (ST)* =T*S*;
for all S, T € A(v) and all A € F.

Proof. We must first prove that 7% is a linear transformation on V. If u,v,w are
in V, then (u, (v +w)T*) = (uT,v +w) = (uT,v) + (uT,w) = (u,vT*) + (u, wT*) =
(u, vT* + wT™*), in consequence of which (v + w)T™* = vT™ + wT™.

Similarly, for A € F, (u, (A0)T*) = (uT, W) = ANuT,v) = AMu,vT*) = (u, \(vT*)),

whence (Av)T™ = A(vT™). Hence T* is a linear transformation on V.

To see that (7*)* = T notice that (u,v(T*)*) = (uT™,v) = (v,uT™*) = (vT,u) =
(u,vT) for all u,v € V whence v(T*)* = vT which implies that (7%)* = T. We leave
the proofs of (S +T)* = S* 4+ T* and of (A\T)* = AT to the reader.

Finally, (u,v(ST)*) = (uST,v) = (uS,VT*) = (u,vT*S*) for all u,v € V; this
forces v(ST)* = vT*S* for every v € V which results in (ST)* = T*S*. O

Lemma 6.2.8. T' € A(V) is unitary if and only if TT* = 1.

Proof. If T is unitary, then for all u,v € V, (u,vTT*) = (uT',vT) = (u,v) hence
TT* = 1. On the other hand, if 77* = 1, then (u,v) = (u,vTT*) = (uT,vT), which

implies that 7" is unitary. a

Note that a unitary transformation is nonsingular and its inverse is just its Hermitian

adjoint. Note, too, that from T7T™* = 1 we must have that T*T = 1.

Theorem 6.2.9. If {vy,...,v,} is an orthonormal basis of V' and if the matriz of
T € A(V) in this basis is (cy;) then the matriz of T in this basis is (B;;), where
Bij = aji

Proof. Since the matrices of 7" and 7™ in this basis are, respectively, (a;;) and (5;;),

then
n n
UZ'T = Z QU5 and 'U,L'T'>|< = Zﬁij?]j
=1

i=1
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Now

Bij = (T, 0) = (vi,0,T) = (v, Y apvr) = @y
=1

by the orthonormality of the v;’s. This proves the theorem. O

Definition 6.2.10. 7' € A(V) is called self-adjoint or Hermitian if 7% = T.
If T* = —T we call skew-Hermitian. Given any S € A(V),

B S+S*+i(S—S*
2 2i

S )

and since % and % are Hermitian, S = A+¢B where both A and B are Hermitian.

Theorem 6.2.11. If T € A(V) is Hermitian, then all its characteristic roots are real.

Proof. Let A be a characteristic root of 7. Then there is a # 0 in V such that
vT = M. Now A(v,v) = (Av,v) = (vT,v) = (v,0T*) = (v,0T) = (v, ) = ANv,v);

since (v,v) # 0 we are left with A = A, hence A is real. O

Lemma 6.2.12. If S € A(V) and if vSS* =0, then vS = 0.

Proof. Consider (uSS*,v); since USS* = 0,0 = (vS5*,v) = (vS,v(S*)*) = (vS,vS).

In an inner-product space, this implies that v.5 = 0. O

Corollary 6.2.13. If T is Hermitian and vT* = 0 for k > 1 then vT = 0.

Proof. We show that if vT?™ = 0 then vT = 0; for if S = T?™~!, then S* = S and
SS* = T*™  whence (vSS*,v) = 0 implies that 0 = v = vT*"~ . Continuing down

in this way, we obtain 7' = 0. If vT* = 0, then vT?™ = 0 for 2m > k, hence vT = 0. O
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Definition 6.2.14. 7' € A(V) is said to be normal if 77* = T"*T.

Lemma 6.2.15. If N is a normal linear transformation and if vIN = 0 forv € V,

then vIN* = 0.

Proof. Consider (vN*, N*); by definition, (vN*,uN*) = (vN*N,v) = (vNN*v),
since NN* = N*N. However, vN = 0, whence, certainly, yNN* = 0. In this way we
obtain that (vN*,vN*) = 0, forcing vN* = 0. O

Corollary 6.2.16. If A is a characteristic root of the normal transformation N and if

vIN = \v then vN* = \v.

Proof. Since N is normal, NN* = N*N| therefore, (N —A)(N —A\)* = (N —\)(N* —
A) = NN*—AN* = AN + A= N*N = AN* = AN + A\ = (N* = A\)(N* = X)) (N = \) =
(N — A\)*(N — \), that is to say n — A is normal. Since v(N — X) = 0 by the normality
of N — A, from the lemma, v(N — \)* = 0, hence vN* = \v. O

Corollary 6.2.17. If T is unitary and if X is a characteristic root of T, then |A| = 1.

Proof. Since T is unitary it is normal. Let A be a characteristic root of T" and suppose
that vT" = v with v # in V. By above Corollary, vT™ = \v, thus v = vTT* = \T* =

A since TT* = 1. Thus we get A\ = 1, which, of course, says that |A| = 1. O

Lemma 6.2.18. If N is normal and if yN*¥ = 0, then vN = 0.

Proof. Let S = NN*; S is Hermitian, and by the normality of N,vS* = v(NN*)* =
vNF(N*)* = 0. By the corollary to Lemma 6.10.6, we deduce that vS = 0, that is to

say, tNN* = 0. From this, we get v/N = 0. O
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Corollary 6.2.19. If N is normal and if for A € F,v(N — \)* =0, then vN = \v.

Proof. From the normality of N it follows that N is normal, whence by applying the

lemma just proved to N — A we obtain the corollary. a

Lemma 6.2.20. Let N be a normal transformation and suppose that \ and p are two
distinct characteristic roots of N. If v,w are in V and are such that vIN = Av,wN =

pw, then (v,w) = 0.

Proof. We compute (vN,w) in two different ways. As a consequence of vN =
v, (N, w) = (Av,w) = A(v,w). From wN = pw, using above Lemma, we obtain
that wN* = fiw, whence (vN,w) = (v, wN*) = (v, iw) = p(v, w). Comparing the two

computations gives us A(v, w) = p(v, w) and since A # p, this results in (v,w) = 0. O

Theorem 6.2.21. If N is a normal linear transformation on V', then there exists an
orthonormal basis, consisting of characteristic vectors of N, in which the matriz of N

18 diagonal.

Proof. Let N be normal and let Aq,..., A\, be the distinct characteristic roots of V.
By the above corollary, we can decompose V = V; & - & Vi, where every v; € V;, is
annihilated by (N — \;)™. From this, we get, V; consists only of characteristic vectors
of N belonging to the characteristic root \;. The inner product of V' induces an inner
product on V; and hence we can find a basis of V; orthonormal relative to this inner
product. By above Lemma, elements lying in distinct V;’s are orthogonal. Thus putting
together the orthonormal bases of the V;’s provides us with an orthonormal basis of V.
This basis consists of characteristic vectors of N, hence in this basis the matrix of N

is diagonal. O
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1. A change of basis from one orthonormal basis to another is accomplished by a

unitary transformation.

2. In a change of basis the matrix of a linear transformation is changed by conju-

gating by the matrix of the change of basis.

Corollary 6.2.22. IfT is a unitary transformation, then there is an orthonormal basis

wn which the matriz of T is diagonal.

Corollary 6.2.23. If T is a Hermitian linear transformation, then there exists an

orthonormal basis in which the matrixz of T is diagonal.

Lemma 6.2.24. The normal transformation N is
1. Hermaitian if and only if its characteristic roots are real.

2. Unitary if and only if its characteristic roots are all of absolute value 1.

Proof. We argue using matrices. If N is Hermitian, then it is normal and all its
characteristic roots are real. If N is normal and has only real characteristic roots,
then for some unitary matrix U, UNU ! UNU* = D, where D is a diagonal matrix
with real entries on the diagonal. Thus D* = D; since D* = (UNU*)* = UN*U*, the
relation D* D implies UN*U* = UNU*, and since U is invertible we obtain N* N.
Thus N is Hermitian.

If A is any linear transformation on V', then tr (AA*) can be computed by using
the matrix representation of A in any basis of V. We pick an orthonormal basis of V;
in this basis, if the matrix of A is [;;] then that of A* is (8ij) where §;; = @;; A simple
computation then shows that tr (AA*) = >7, . |ay;|* and this is 0 if and only if each
a;; = 0, that is, if and only if A =0. In a word, tr (AA*) =0 if and only if A=0. O
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Lemma 6.2.25. If N is normal and AN = NA, then AN* = N*A.

Proof. We want to show that X = AN* — N*A is 0; what we shall do is prove that
tr XX* =0, and deduce from this that X = 0. Since N commutes with A and with
N*, it must commute with AN* — N*A, thus X X* = (AN* — N*A)(NA* — A*N) =
(AN*—=N*A)NA*— (AN* = N*A)A*N = N{(AN*—N*A)A*} —{(AN*— N*A)A*}N.
Being of the form NB — BN, the trace of X X* is 0. Thus X =0, and AN* = N*A.

O

Lemma 6.2.26. The Hermitian linear transformation T is nonnegative. (positive) if

and only if all of its characteristic roots are nonnegative (positive).

Proof. Suppose that T > 0; if X is a characteristic root of T', then vT" = Av for some
v # 0. Thus 0 < (vT,v) = (Av,v) = A(v,v); since (v,v) > 0 we deduce that A > 0.
Conversely, if T' is Hermitian with nonnegative characteristic roots, then we can find
an orthonormal basis {v1, ..., v,} consisting of characteristic vectors of T'. For each v;,
v/ T = \v;, where \; > 0. Given v € V,v = > ayv; hence vT = > v T = > \ayv;.
But (vT,v) = (O] vy, Y. ayv;) = > Njeyia; by the orthonormality of v;’s. Since A; > 0

and a;a; > 0. We get (vT,v) > 0 hence T' > 0. O

Lemma 6.2.27. T' > 0 if and only if T = AA* for some A.

Proof. We first show that AA* > 0, Given v € V, (vAA*,V) = (vA,vA) > 0, hence
AA* > 0.

On the other hand, if 7" > 0 we can find a unitary matrix U such that

A
UTu” =
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where each ); is a characteristic root of T', hence each \; > 0. Let

VAL

vV

since each \; > 0, each \/)\; is real, whence S is Hermitian. Therefore, U*SU is

Hermitian, but

Vi
(U*SU)* = U*S?U = U* U=T

We have represented T in the form AA*, where A = U*SU. Notice that we have actually
proved a little more; namely, if in constructing S above, we had chosen the nonnegative
A; for each \;, then S, and U*SU, would have been nonnegative. Thus 7" > 0 is the
square of a non- negative linear transformation; that is, every 7' > 0 has a nonnegative

square root. This nonnegative square root can be shown to be unique O

6.3 Real Quadratic Forms

Definition 6.3.1. Two real symmetric matrices A and B are congruent if there is a

nonsingular real matriz T such that B = TAT' .

Lemma 6.3.2. Congruence is an equivalence relation.
Proof. Let us write, when A is congruent to B, A = B.
1. A= Afor A= |A|.

2. If A = B then B = TAT where T is nonsingular, hence A = SBS" where
S =T7! Thus B = A.
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3. If A~ B and B = C then B = TAT while C = RBR', hence C = RTAT' R =
(RT)A(RT)', and so A = C.

Since the relation satisfies the defining conditions for an equivalence relation, the lemma

is proved. O

Theorem 6.3.3. Given the real symmetric matrix A there is an invertible matriz T

such that

0

where I. and I, are respectively the r X r and s X s unit matrices and where 0, is the
t x t zero-matriz. The integers r + s, which is the rank of A, and r — s, which is the
signature of A, characterize the congruence class of A. That is, two real symmetric

matrices are congruent if and only if they have the same rank and signature.

Proof. Since A is real symmetric its characteristic roots are all real; let Ay, --- |\,
be its positive characteristic roots, —A, 11, -+, =\, its negative. We can find a real

orthogonal matrix C' such that

A

CAC™ = CAC = A
)\rJrl
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where t =n —r —s. Let D be the real diagonal matrix shown above.

1
VA

S

V _)\r+1

V _)\r+s

Iy

A single composition shows that

0

Thus there is a matrix of the required form in the congruence class of A.
Our task is now to show that this is the only matrix in the congruence class of A of

this form, or, equivalently, that

L= —1, and M = i

Ot Ot/

are congruent only if r =1/, s = s and t =t . Suppose that M = T LT  where T is
invertible and so the rank of M equals that of L; since the rank of M is n — ¢t while
that of Lisn —t we get t =t .

Suppose that r < r'; sincen =r+s+t=1r +s +t, and since t = ', we must
have s > 5. Let U be the subspace of F( of all vectors having the first r and last ¢

coordinates 0; U is s-dimensional and for v # 0 in U, (uL,u) < 0.
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Let W be the subspace of F™ for which the 7’ + 1,---,7’ + s’ components are
all 0; on W, (wM,w) > 0 for any w € W. Since T is invertible, and since W is
(n — s')-dimensional, WT is (n — s')-dimensional. For w € W, (wM,w) > 0; hence
(WT'LT',w) > 0; that is, (wT'L,wT) > 0. Therefore, on WT, (wTL,wT) > 0 for all
elements.

Now dim(WT)+dimU = (n—s')+r=n+s—s >nand so WI'NU # 0. This,
however, is nonsense, for if x # 0 € WT N U, on one hand, being in U, (zL,z) < 0,
while on the other, being in WT, (xL,x) > 0. Thus r = 7’ and so s = §'. The rank,
r + s, and signature, rs, of course, determine r, s and so t = (n — r — s), whence they

determine the congruence class. O
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